1
|
Liu XJ, Zhu KL, Ye YQ, Han ZT, Tan XY, Du ZJ, Ye MQ. Phenotypic and genotypic characterization of Marinobacterium weihaiense sp. nov. and Marinobacterium marinum sp. nov., isolated from marine sediment, and genomic properties of the genus Marinobacterium. Microb Genom 2024; 10:001182. [PMID: 38265428 PMCID: PMC10868613 DOI: 10.1099/mgen.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
In this study, two novel bacterial strains were isolated from coastal sediment of Weihai, China. The two strains were Gram-stain-negative and facultatively aerobic, designated 3-1745T and A346T. Based on phenotypic, genetic and phylogenetic properties, strains 3-1745T and A346T represent two novel species of the genus Marinobacterium. The results of genome analysis revealed many central carbohydrate metabolism pathways such as gluconeogenesis, pyruvate oxidation, tricyclic acid cycle, pentose phosphate pathway and PRPP biosynthesis in the genus Marinobacterium. The ability of strains 3-1745T and A346T to utilize volatile fatty acids was experimentally confirmed. Polyhydroxyalkanoate synthases (PhaA, PhaB and PhaC) for the synthesis of polyhydroxyalkanoates were prevalent in the genus Marinobacterium. Multiple BGCs (biosynthetic gene clusters) including betalactone, ectoine, ranthipeptide, redox-cofactor, RiPPs (ribosomally synthesized post-translationally modified peptides) and T3PKS (polyketide synthases) in the genome of the genus Marinobacterium were found. Additional genome analyses suggested that the genus Marinobacterium contained diverse potential mechanisms of salt tolerance and mainly utilized oligosaccharides. This is the first report on broad genomic analyses of the genus Marinobacterium with the description of two novel species and potential ecological and biotechnological implications.
Collapse
Affiliation(s)
- Xin-Jiang Liu
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, PR China
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ke-Lei Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ze-Tian Han
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Xin-Yun Tan
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, PR China
| | - Meng-Qi Ye
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, PR China
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, PR China
| |
Collapse
|
2
|
Tanuku SNR, Pinnaka AK, Behera S, Singh A, Pydi S, Vasudeva G, Vaidya B, Sharma G, Ganta SK, Garbhapu NS. Marinobacterium lacunae sp. nov. isolated from estuarine sediment. Arch Microbiol 2023; 205:294. [PMID: 37480395 DOI: 10.1007/s00203-023-03627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
A novel motile bacterium was isolated from a sediment sample collected in Kochi backwaters, Kerala, India. This bacterium is Gram negative, rod shaped, 1.0-1.5 µm wide, and 2.0-3.0 µm long. It was designated as strain AK27T. Colonies were grown on marine agar displayed circular, off-white, shiny, moist, translucent, flat, margin entire, 1-2 mm in diameter. The major fatty acids identified in this strain were C18:1 ω7c, C16:0, and summed in feature 3. The composition of polar lipids in the strain AK27T included phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unidentified amino lipid, two unidentified aminophospholipids, two unidentified phospholipids, and six unidentified lipids. The genomic DNA of strain AK27T exhibited a G+C content of 56.4 mol%. Based on the analysis of 16S rRNA gene sequence, strain AK27T showed sequence similarity to M. ramblicola D7T and M. zhoushanense WM3T as 98.99% and 98.58%, respectively. Compared to other type strains of the Marinobacterium genus, strain AK27T exhibited sequence similarities ranging from 91.7% to 96.4%. When compared to Marinobacterium zhoushanense WM3T and Marinobacterium ramblicola D7T, strain AK27T exhibited average nucleotide identity values of 80.25% and 79.97%, and dDDH values of 22.9% and 22.6%, respectively. The genome size of the strain AK27T was 4.55 Mb, with 4,229 coding sequences. Based on the observed phenotypic and chemotaxonomic features, and the results of phylogenetic and phylogenomic analysis, this study proposes the classification of strain AK27T as a novel species within the genus Marinobacterium. The proposed name for this novel species is Marinobacterium lacunae sp. nov.
Collapse
Affiliation(s)
- Srinivas Naga Radha Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swarnaprava Behera
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditya Singh
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sudharani Pydi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India
| | - Gunjan Vasudeva
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Bhumika Vaidya
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Gunjan Sharma
- MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sampath Kumar Ganta
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India
| | - Naveen Sagar Garbhapu
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India
| |
Collapse
|
3
|
Plante CJ, Hill-Spanik KM, Emerson R. Inputs don't equal outputs: bacterial microbiomes of the ingesta, gut, and feces of the keystone deposit feeder Ilyanassa obsoleta. FEMS Microbiol Ecol 2022; 99:6887277. [PMID: 36496168 DOI: 10.1093/femsec/fiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this 'keystone species' and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Collapse
Affiliation(s)
- Craig J Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| | | | - Rowan Emerson
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| |
Collapse
|
4
|
Boopathi S, Vashisth R, Mohanty AK, Jia AQ, Sivakumar N, Arockiaraj J. Bacillus subtilis BR4 derived stigmatellin Y interferes Pqs-PqsR mediated quorum sensing system of Pseudomonas aeruginosa. J Basic Microbiol 2022; 62:801-814. [PMID: 35355286 DOI: 10.1002/jobm.202200017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
Cell-to-cell communication is essentially required in bacteria for the production of multiple virulence factors and successful colonization in the host. Targeting the virulence factors production without hampering the growth of the pathogens is a potential strategy to control pathogenesis. To accomplish this, a total of 43 mangrove isolates were screened for quorum quenching (QQ) activity against Pseudomonas aeruginosa (PA), in which eight bacteria have shown antibiofilm activity without hampering the growth of the PA. Prominent QQ activity was observed in Bacillus subtilis BR4. Previously, we found that BR4 produces stigmatellin Y, a structural analogue of PQS signal of PA, which could competitively bind with PqsR receptor and inhibits the quorum sensing (QS) system of PA. Further, stigmatellin Y containing ethyl acetate extract (S-EAE) (100 µg ml-1 ) of BR4 significantly inhibits (p < 0.001) the biofilm formation of PA. Confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analysis also fortified the QQ activity of BR4. Furthermore, S-EAE of BR4 (500 µg ml-1 ) has significantly reduced the production of virulence factors, including protease, elastase, pyocyanin and extracellular polysaccharides substances. Furthermore, liquid chromatography-mass spectrometry (LC-MS)/MS analysis affirms that BR4 intercepts the PQS-mediated QS system by reducing the synthesis of as many PQS signals, including precursor molecule (243.162313 Da) of PQS signal. Thus, S-EAE of B. subtilis BR4 could be used as a promising therapeutic agent to combat QS system-mediated pathogenesis of PA. Further therapeutic potentials of stigmatellin Y to be evaluated in clinical studies for the treatment of multidrug resistant PA.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | | | - Ashok Kumar Mohanty
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Taxogenomic and Metabolic Insights into Marinobacterium ramblicola sp. nov., a New Slightly Halophilic Bacterium Isolated from Rambla Salada, Murcia. Microorganisms 2021; 9:microorganisms9081654. [PMID: 34442733 PMCID: PMC8398569 DOI: 10.3390/microorganisms9081654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
A Gram-negative, motile, rod-shaped bacteria, designated D7T, was isolated by using the dilution-to-extinction method, from a soil sample taken from Rambla Salada (Murcia, Spain). Growth of strain D7T was observed at 15–40 °C (optimum, 37 °C), pH 5–9 (optimum, 7) and 0–7.5% (w/v) NaCl (optimum, 3%). It is facultatively anaerobic. Phylogenetic analysis based on 16S rRNA gene sequence showed it belongs to the genus Marinobacterium. The in silico DDH and ANI against closest Marinobacterium relatives support its placement as a new species within this genus. The major fatty acids of strain D7T were C16:0, summed feature 3 (C16:1 ω7c/C16:1 ω6c) and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The polar lipid profile consists of phosphatidylethanolamine, phosphatidylglycerol and two uncharacterized lipids. Ubiquinone 8 was the unique isoprenoid quinone detected. The DNA G + C content was 59.2 mol%. On the basis of the phylogenetic, phenotypic, chemotaxonomic and genomic characterization, strain D7T (= CECT 9818T = LMG 31312T) represents a novel species of the genus Marinobacterium for which the name Marinobacterium ramblicola sp. nov. is proposed. Genome-based metabolic reconstructions of strain D7T suggested a heterotrophic and chemolitotrophic lifestyle, as well as the capacity to biosynthetize and catabolize compatible solutes, and to degrade hydrocarbon aromatic compounds.
Collapse
|
6
|
Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun 2021; 12:4160. [PMID: 34230473 PMCID: PMC8260585 DOI: 10.1038/s41467-021-24299-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen fixation has a critical role in marine primary production, yet our understanding of marine nitrogen-fixers (diazotrophs) is hindered by limited observations. Here, we report a quantitative image analysis pipeline combined with mapping of molecular markers for mining >2,000,000 images and >1300 metagenomes from surface, deep chlorophyll maximum and mesopelagic seawater samples across 6 size fractions (<0.2–2000 μm). We use this approach to characterise the diversity, abundance, biovolume and distribution of symbiotic, colony-forming and particle-associated diazotrophs at a global scale. We show that imaging and PCR-free molecular data are congruent. Sequence reads indicate diazotrophs are detected from the ultrasmall bacterioplankton (<0.2 μm) to mesoplankton (180–2000 μm) communities, while images predict numerous symbiotic and colony-forming diazotrophs (>20 µm). Using imaging and molecular data, we estimate that polyploidy can substantially affect gene abundances of symbiotic versus colony-forming diazotrophs. Our results support the canonical view that larger diazotrophs (>10 μm) dominate the tropical belts, while unicellular cyanobacterial and non-cyanobacterial diazotrophs are globally distributed in surface and mesopelagic layers. We describe co-occurring diazotrophic lineages of different lifestyles and identify high-density regions of diazotrophs in the global ocean. Overall, we provide an update of marine diazotroph biogeographical diversity and present a new bioimaging-bioinformatic workflow. Nitrogen fixation by diazotrophs is critical for marine primary production. Using Tara Oceans datasets, this study combines a quantitative image analysis pipeline with metagenomic mining to provide an improved global overview of diazotroph abundance, diversity and distribution.
Collapse
|
7
|
Pinnaka AK, Tanuku NRS, Gupta V, Vasudeva G, Pydi S, Kashyap N, Behera S, Ganta SK. Marinobacterium alkalitolerans sp. nov., with nitrate reductase and urease activity isolated from green algal mat collected from a solar saltern. Antonie van Leeuwenhoek 2021; 114:1117-1130. [PMID: 34059969 DOI: 10.1007/s10482-021-01582-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
A novel Gram-staining-negative, rod-shaped, 0.6-0.8 µm wide and 2.0-3.0 µm in length, motile bacterium designated strain AK62T, was isolated from the green algal mat collected from saltpan, Kakinada, Andhra Pradesh, India. Colonies on ZMA were circular, off-white, shiny, moist, translucent, 1-2 mm in diameter, flat, with an entire margin. The major fatty acids include C16:0, C18:1 ω7c, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c and/or iso-C14:0 3-OH). Polar lipids include diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, three unidentified phospholipids, and one unidentified lipid. Polyamine includes Spermidine. The DNA G + C content of the strain AK62T was 58.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain AK62T was closely related to the type strains Marinobacterium sediminicola, Marinobacterium coralli and Marinobacterium stanieri with a pair-wise sequence similarity of 96.9, 96.6 and 96.6%, respectively, forming a distinct branch within the genus Marinobacterium and clustered with M. stanieri, M. sediminicola, M. coralli and M. maritimum cluster. Strain AK62T shares average nucleotide identity (ANIb, based on BLAST) of 78.44, 76.69, and 76.95% with M. sediminicola CGMCC 1.7287T, M. stanieri DSM 7027T, and Marinobacterium halophilum Mano11T respectively. Based on the observed phenotypic, chemotaxonomic characteristics, and phylogenetic analysis, strain AK62T is described in this study as a novel species in the genus Marinobacterium, for which the name Marinobacterium alkalitolerans sp. nov. is proposed. The type strain of M. alkalitolerans is AK62T (= MTCC 12102T = JCM 31159T = KCTC 52667T).
Collapse
Affiliation(s)
- Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naga Radha Srinivas Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vasundhara Gupta
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Gunjan Vasudeva
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sudharani Pydi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India
| | - Nishant Kashyap
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Swarnaprava Behera
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sampath Kumar Ganta
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam, 530017, India
| |
Collapse
|
8
|
Jabir T, Vipindas PV, Jesmi Y, Divya PS, Adarsh BM, Nafeesathul Miziriya HS, Mohamed Hatha AA. Influence of environmental factors on benthic nitrogen fixation and role of sulfur reducing diazotrophs in a eutrophic tropical estuary. MARINE POLLUTION BULLETIN 2021; 165:112126. [PMID: 33667934 DOI: 10.1016/j.marpolbul.2021.112126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 05/20/2023]
Abstract
Benthic nitrogen fixation in the tropical estuaries plays a major role in marine nitrogen cycle, its contribution to nitrogen budget and players behind process is not well understood. The present study was estimated the benthic nitrogen fixation rate in a tropical estuary (Cochin) and also evaluated the contribution of various diazotrophic bacterial communities. Nitrogen fixation was detected throughout year (0.1-1.11 nmol N g-1 h-1); higher activity was observed in post-monsoon. The nifH gene abundance was varied from 0.8 × 104 to 0.6 × 108 copies g-1dry sediment; highest was detected in post-monsoon. The Cluster I and Cluster III were the dominant diazotrophs. Sulfur reducing bacterial phylotypes (Deltaproteobacteria) contributed up to 2-72% of total nitrogen fixation. These bacteria may provide new nitrogen to these systems, counteracting nitrogen loss via denitrification and anammox. Overall, the study explained the importance of benthic nitrogen fixation and role of diazotrophs in a monsoon influenced tropical estuarine environments.
Collapse
Affiliation(s)
- T Jabir
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco-da-Gama, Goa 403 804, India.
| | - P V Vipindas
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco-da-Gama, Goa 403 804, India
| | - Y Jesmi
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - P S Divya
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - B M Adarsh
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - H S Nafeesathul Miziriya
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682016, India; CUSAT-NCPOR Centre for Polar Sciences, Cochin University of Science and Technology (CUSAT), Kochi 682 016, India.
| |
Collapse
|
9
|
16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS One 2021; 16:e0248485. [PMID: 33755699 PMCID: PMC7987175 DOI: 10.1371/journal.pone.0248485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species–environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.
Collapse
|
10
|
John WA, Böttcher NL, Aßkamp M, Bergounhou A, Kumari N, Ho PW, D'Souza RN, Nevoigt E, Ullrich MS. Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chem 2019; 278:786-794. [DOI: 10.1016/j.foodchem.2018.11.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
11
|
Chen J, Wang PF, Wang C, Wang X, Gao H. Effects of decabromodiphenyl ether and planting on the abundance and community composition of nitrogen-fixing bacteria and ammonia oxidizers in mangrove sediments: A laboratory microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1045-1055. [PMID: 29100689 DOI: 10.1016/j.scitotenv.2017.10.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
While nitrogen (N) fixation and ammonia oxidation by microorganisms are two important N cycling processes, little is known about how the microbes that drive these two processes respond when sediments are contaminated with persistent organic pollutants. In this study, we carried out a laboratory microcosm experiment to examine the effects of decabromodiphenyl ether (BDE-209), either on its own or combined with a common mangrove species, Avicennia marina, on the abundance, diversity, and community composition of N-fixing bacteria (NFB) and ammonia-oxidizing archaea (AOA) and bacteria (AOB) in mangrove sediments. The sediments were very N-limited after one year. The rates of N fixation and NFB abundance were significantly higher in the sediments that contaminated by BDE-209, especially in the planted sediment, indicating that both BDE-209 and planting stimulated N fixation in N-limited mangrove sediments. In contrast, the potential nitrification rate and abundance of AOA and AOB decreased significantly under BDE-209 and planting, and the inhibitory effects were stronger in the sediment with both planting and BDE-209 than in the sediments with either BDE-209 or planting. The results from pyrosequencing showed that the richness and diversity of NFB increased, while those of AOA and AOB decreased, in the sediments treated with BDE-209 only and with BDE-209 combined with planting. The community compositions of NFB, AOA, and AOB in the sediments shifted significantly because of BDE-209, either alone or particularly when combined with planting, as shown by the increases in some NFB from the Proteobacteria phylum and decreases in AOA in the Nitrosopumilus genus and AOB in the Nitrosospira genus, respectively.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
12
|
Bae SS, Jung J, Chung D, Baek K. Marinobacterium aestuarii sp. nov., a benzene-degrading marine bacterium isolated from estuary sediment. Int J Syst Evol Microbiol 2018; 68:651-656. [DOI: 10.1099/ijsem.0.002561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Seung Seob Bae
- National Marine Biodiversity Institute of Korea, Chungchungnam-do, 33662, Republic of Korea
| | - Jaejoon Jung
- National Marine Biodiversity Institute of Korea, Chungchungnam-do, 33662, Republic of Korea
| | - Dawoon Chung
- National Marine Biodiversity Institute of Korea, Chungchungnam-do, 33662, Republic of Korea
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, Chungchungnam-do, 33662, Republic of Korea
| |
Collapse
|
13
|
Xu LH, Tan Z, Zhang C, Liu Y, Li C, Zhang X, Wu J, Xie Q. Performance and microbial diversity of a full-scale oilfield wastewater treatment plant. DESALINATION AND WATER TREATMENT 2017; 99:239-247. [DOI: 10.5004/dwt.2017.21694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
14
|
Draft genome sequence of Marinobacterium rhizophilum CL-YJ9 T (DSM 18822 T), isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Stand Genomic Sci 2017; 12:65. [PMID: 29093768 PMCID: PMC5663061 DOI: 10.1186/s40793-017-0275-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022] Open
Abstract
The genus Marinobacterium belongs to the family Alteromonadaceae within the class Gammaproteobacteria and was reported in 1997. Currently the genus Marinobacterium contains 16 species. Marinobacterium rhizophilum CL-YJ9T was isolated from sediment associated with the roots of a plant growing in a tidal flat of Youngjong Island, Korea. The genome of the strain CL-YJ9T was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: KMG project. Here we report the main features of the draft genome of the strain. The 5,364,574 bp long draft genome consists of 58 scaffolds with 4762 protein-coding and 91 RNA genes. Based on the genomic analyses, the strain seems to adapt to osmotic changes by intracellular production as well as extracellular uptake of compatible solutes, such as ectoine and betaine. In addition, the strain has a number of genes to defense against oxygen stresses such as reactive oxygen species and hypoxia.
Collapse
|
15
|
Imchen M, Kumavath R, Barh D, Azevedo V, Ghosh P, Viana M, Wattam AR. Searching for signatures across microbial communities: Metagenomic analysis of soil samples from mangrove and other ecosystems. Sci Rep 2017; 7:8859. [PMID: 28821820 PMCID: PMC5562921 DOI: 10.1038/s41598-017-09254-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, we categorize the microbial community in mangrove sediment samples from four different locations within a vast mangrove system in Kerala, India. We compared this data to other samples taken from the other known mangrove data, a tropical rainforest, and ocean sediment. An examination of the microbial communities from a large mangrove forest that stretches across southwestern India showed strong similarities across the higher taxonomic levels. When ocean sediment and a single isolate from a tropical rain forest were included in the analysis, a strong pattern emerged with Bacteria from the phylum Proteobacteria being the prominent taxon among the forest samples. The ocean samples were predominantly Archaea, with Euryarchaeota as the dominant phylum. Principal component and functional analyses grouped the samples isolated from forests, including those from disparate mangrove forests and the tropical rain forest, from the ocean. Our findings show similar patterns in samples were isolated from forests, and these were distinct from the ocean sediment isolates. The taxonomic structure was maintained to the level of class, and functional analysis of the genes present also displayed these similarities. Our report for the first time shows the richness of microbial diversity in the Kerala coast and its differences with tropical rain forest and ocean microbiome.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Periye, Padanakkad P.O, Kasaragod, Kerala, 671314, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Periye, Padanakkad P.O, Kasaragod, Kerala, 671314, India.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, 721172, India.,Xcode Life Sciences, 3D Eldorado, 112 Nungambakkam High Road, Nungambakkam, Chennai, Tamil Nadu, 600034, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Marcus Viana
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech University, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
16
|
Nitrogen fixing bacterial diversity in a tropical estuarine sediments. World J Microbiol Biotechnol 2017; 33:41. [DOI: 10.1007/s11274-017-2205-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
|
17
|
Han SB, Wang RJ, Yu XY, Su Y, Sun C, Fu GY, Zhang CY, Zhu XF, Wu M. Marinobacterium zhoushanense sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3437-3442. [PMID: 27265099 DOI: 10.1099/ijsem.0.001213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, facultatively anaerobic bacterium, designated WM3T, was isolated from surface seawater collected from the East China Sea. Cells were catalase- and oxidase-positive, short rods and motile by means of a single polar flagellum. Growth occurred at 15-43 °C (optimum 37-40 C), pH 5.5-9.5 (optimum pH 6.5-7.5) and with 0.25-9.0 % (w/v) NaCl (optimum 1.0-1.5 %). Chemotaxonomic analysis showed that the respiratory quinone was ubiquinone-8, the major fatty acids included C16 : 0 (23.6 %), C18 : 1ω7c (26.2 %) and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH, 22.1 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain WM3T was most closely related to the genus Marinobacterium, sharing the highest 16S rRNA gene sequence similarity of 95.5 % with both Marinobacterium litorale KCTC 12756T and Marinobacterium mangrovicola DSM 27697T. The genomic DNA G+C content of the strain WM3T was 55.8 mol%. On the basis of phenotypic, chemotaxonomic and genotypic characteristics presented in this study, strain WM3T is suggested to represent a novel species of the genus Marinobacterium, for which the name Marinobacterium zhoushanense sp. nov. is proposed. The type strain is WM3T (=KCTC 42782T=CGMCC 1.15341T).
Collapse
Affiliation(s)
- Shuai-Bo Han
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rui-Jun Wang
- Ocean College, Zhejiang University, Hangzhou 310058, PR China
| | - Xiao-Yun Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Su
- Ocean College, Zhejiang University, Hangzhou 310058, PR China
| | - Cong Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ge-Yi Fu
- Ocean College, Zhejiang University, Hangzhou 310058, PR China
| | - Chong-Ya Zhang
- Ocean College, Zhejiang University, Hangzhou 310058, PR China
| | - Xu-Fen Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
18
|
Yeon Hwang C, Jung Yoon S, Lee I, Baek K, Mi Lee Y, Yoo KC, Il Yoon H, Kum Lee H. Marinobacterium profundum sp. nov., a marine bacterium from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66:1561-1566. [PMID: 26813672 DOI: 10.1099/ijsem.0.000918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped and motile strain, designated PAMC 27536T, was isolated from deep-sea sediment in the East Sea, Korea. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus Marinobacterium. Phylogenetic analyses revealed that strain PAMC 27536T was related most closely to Marinobacterium rhizophilum CL-YJ9T with a 16S rRNA gene sequence similarity of 98.5 % and to other members of the genus Marinobacterium (94.0-91.7 %). Genomic relatedness analyses between strain PAMC 27536T and M. rhizophilum KCCM 42386T gave an average nucleotide identity of 85.6 % and an estimated DNA-DNA hybridization of 24.6 % using the genome-to-genome distance calculator, indicating that they represent genomically distinct species. Cells of strain PAMC 27536T grew optimally at 25-30 °C and pH 7.0-7.5 in the presence of 3 % (w/v) sea salts. The major cellular fatty acids were C16 : 1ω6c and/or C16 : 1ω7c, C18 : 1ω6c and/or C18 : 1ω7c, and C16 : 0. The major isoprenoid quinone was Q-8. The genomic DNA G+C content was 56.1-57.2 mol%. Based on the phylogenetic, chemotaxonomic, genomic and phenotypic data presented, a novel species with the name Marinobacterium profundum sp. nov. is proposed, with PAMC 27536T ( = KCCM 43095T = JCM 30410T) as the type strain.
Collapse
Affiliation(s)
- Chung Yeon Hwang
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Soo Jung Yoon
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Inae Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Kiwoon Baek
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Yung Mi Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Kyu-Cheul Yoo
- Division of Climate Change, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Ho Il Yoon
- Division of Climate Change, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Hong Kum Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| |
Collapse
|
19
|
Park S, Jung YT, Kim S, Yoon JH. Marinobacterium aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:1718-1723. [PMID: 26812956 DOI: 10.1099/ijsem.0.000927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile, aerobic, rod- or ovoid-shaped bacterium, designated DB-1T, was isolated from a tidal flat on the Yellow Sea in South Korea and subjected to a taxonomic study using a polyphasic approach. Strain DB-1T grew optimally at 30 °C, at pH 7.0-8.0 and in the presence of 0.5-2.0% (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain DB-1T falls within the clade comprising species of the genus Marinobacterium, clustering coherently with the type strain of Marinobacterium nitratireducens and showing a sequence similarity value of 98.4 %. The novel strain exhibited 16S rRNA gene sequence similarities of 91.5-94.4 % to the type strains of other species of the genus Marinobacterium. Strain DB-1T contained Q-8 as the predominant ubiquinone and C18:1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C16:0 as the major fatty acids. The major polar lipids detected in strain DB-1T were phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminolipid, one unidentified glycolipid, one unidentified phospholipid and two unidentified lipids. The DNA G+C content of strain DB-1T was 62.3 mol% and the mean DNA-DNA relatedness value with the type strain of M. nitratireducens was 21±4.6%. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain DB-1T is separated from recognized species of the genus Marinobacterium. On the basis of the data presented, strain DB-1T is considered to represent a novel species of the genus Marinobacterium, for which the name Marinobacterium aestuariivivens sp. nov. is proposed. The type strain is DB-1T (=KCTC 42778T=NBRC 111756T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea.,University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Sona Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| |
Collapse
|
20
|
Pyrosequencing-Based Seasonal Observation of Prokaryotic Diversity in Pneumatophore-Associated Soil of Avicennia marina. Curr Microbiol 2015; 72:68-74. [DOI: 10.1007/s00284-015-0920-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/09/2015] [Indexed: 02/02/2023]
|
21
|
Alfaro-Espinoza G, Ullrich MS. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction. Front Microbiol 2015; 6:445. [PMID: 26029186 PMCID: PMC4426756 DOI: 10.3389/fmicb.2015.00445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown interactions.
Collapse
|