1
|
Arahal DR, Bull CT, Busse HJ, Christensen H, Chuvochina M, Dedysh SN, Fournier PE, Konstantinidis KT, Parker CT, Rossello-Mora R, Ventosa A, Göker M. Judicial Opinions 123-127. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748499 DOI: 10.1099/ijsem.0.005708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Opinion 123 places the epithet of the name Aeromonas punctata on the list of rejected epithets and clarifies the citation of authors of selected names within the genus Aeromonas. Opinion 124 denies the request to place Borreliella on the list of rejected names because the request is based on a misinterpretation of the Code, which is clarified. There are alternative ways to solve the perceived problem. Opinion 125 denies the request to place Lactobacillus fornicalis on the list of rejected names because the provided information does not yield a reason for rejection. Opinion 126 denies the request to place Prolinoborus and Prolinoborus fasciculus on the list of rejected names because a relevant type strain deposit was not examined. Opinion 127 grants the request to assign the strain deposited as ATCC 4720 as the type strain of Agrobacterium tumefaciens, thereby correcting the Approved Lists. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- David R Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, 211 Buckhout Lab, University Park, PA 16802, USA
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Wien, Austria
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, QLD 4072, Australia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Prospect 60-letya Octyabrya 7/2, Moscow 117312, Russia
| | | | - Konstantinos T Konstantinidis
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Charles T Parker
- NamesforLife, LLC, East Lansing, Okemos, Michigan 48805-0769, USA
| | - Ramon Rossello-Mora
- Department of Animal and Microbial Biodiversity, Institut Mediterrani d'Estudis Avançats, CSIC-UIB, C/ Miquel Marqués 21, 07190 Esporles, Illes Balears, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, C/ Prof. Garcia Gonzalez 2, ES-41012 Sevilla, Spain
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
2
|
Göker M. Judicial Commission of the International Committee on Systematics of Prokaryotes: Minutes of the Meeting on 27 July 2022. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minutes of the online meeting of the Judicial Commission of the International Committee on Systematics of Prokaryotes that was held on 27 July 2022 per video conference are presented.
Collapse
Affiliation(s)
- Markus Göker
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
3
|
Velázquez E, Flores-Félix JD, Sánchez-Juanes F, Igual JM, Peix Á. Strain ATCC 4720 T is the authentic type strain of Agrobacterium tumefaciens, which is not a later heterotypic synonym of Agrobacterium radiobacter. Int J Syst Evol Microbiol 2020; 70:5172-5176. [PMID: 32915125 DOI: 10.1099/ijsem.0.004443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The original type strains of Agrobacterium radiobacter and Agrobacterium tumefaciens recorded in the eighth edition of Bergey's Manual of Determinative Bacteriology published in 1974 were NCIB 9042T and ATCC 4720T, respectively. However, in the list of the valid names of bacteria compiled in 1980, both strains were changed, A. radiobacter NCIB 9042T to ATCC 19358T and A. tumefaciens ATCC 4720T to ATCC 23308T. These changes were unjustified, particularly in the case of A. tumefaciens whose type strain was replaced by another strain from the same collection, although the original type strain ATCC 4720T was never lost and it is currently available in several culture collections. Therefore, we request that the type strain of A. tumefaciens be corrected from ATCC 23308T to ATCC 4720T.
Collapse
Affiliation(s)
- Encarna Velázquez
- Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Spain
| | - José David Flores-Félix
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, España.,Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, España
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain.,Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain.,Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
4
|
Flores-Félix JD, Menéndez E, Peix A, García-Fraile P, Velázquez E. History and current taxonomic status of genus Agrobacterium. Syst Appl Microbiol 2020; 43:126046. [DOI: 10.1016/j.syapm.2019.126046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
5
|
Casanova C, Lo Priore E, Egli A, Seth-Smith HMB, Räber L, Ott D, Pflüger V, Droz S, Marschall J, Sommerstein R. Agrobacterium spp. nosocomial outbreak assessment using rapid MALDI-TOF MS based typing, confirmed by whole genome sequencing. Antimicrob Resist Infect Control 2019; 8:171. [PMID: 31700617 PMCID: PMC6829841 DOI: 10.1186/s13756-019-0619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.
Collapse
Affiliation(s)
- Carlo Casanova
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Elia Lo Priore
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Adrian Egli
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- 3Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,4Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Ott
- Department of Radiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Sara Droz
- 1Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse, 3001 Bern, Switzerland
| |
Collapse
|
6
|
Gan HM, Lee MVL, Savka MA. Improved genome of Agrobacterium radiobacter type strain provides new taxonomic insight into Agrobacterium genomospecies 4. PeerJ 2019; 7:e6366. [PMID: 30775173 PMCID: PMC6369824 DOI: 10.7717/peerj.6366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The reported Agrobacterium radiobacter DSM 30174T genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative genomics of these contentious Agrobacterium species. We provide concrete evidence that the previously reported Agrobacterium radiobacter type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as Agrobacterium radiobacter subsp. tumefaciens and that Agrobacterium radiobacter retains it species status with the proposed name of Agrobacterium radiobacter subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both Agrobacterium radiobacter and Agrobacterium tumefaciens into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that Agrobacterium radiobacter NCPPB3001 is sufficiently divergent from Agrobacterium tumefaciens to propose two independent sub-clades. Third, Agrobacterium tumefaciens demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than Agrobacterium radiobacter.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Melvin V L Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Michael A Savka
- College of Science, The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
7
|
Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, Petersen J. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316 T-A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae. Front Microbiol 2017; 8:1787. [PMID: 28983283 PMCID: PMC5613091 DOI: 10.3389/fmicb.2017.01787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.
Collapse
Affiliation(s)
- Pascal Bartling
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Markus Göker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
8
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485-2494. [PMID: 28771120 DOI: 10.1099/ijsem.0.002144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
Tindall BJ. The nomenclatural type of the genus Methanocorpusculum Zellner et al. 1988 and the selection of the correct name. Int J Syst Evol Microbiol 2016; 66:4900-4904. [PMID: 27499051 DOI: 10.1099/ijsem.0.001385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent Request for an Opinion has raised the issue of the inter-relationship between Methanocorpusculum parvum Zellner et al. 1988, the type species of the genus Methanocorpusculum Zellner et al. 1988 as defined at the time of valid publication of the genus name and the subsequent recognition of Methanocorpusculum aggregans (Ollivier et al., 1985) Xun et al.1989 as an earlier heterotypic synonym. Examination of the relevant literature indicates that there are a number of misunderstandings that have arisen. In particular misinterpretation of Rule 15 of the International Code of Nomenclature of Prokaryotes continues to be a source of confusion. Additional problems centre on whether the nomenclatural type of a taxon continues to be the nomenclatural type even if that name is not treated as the correct name and would not appear in a list of names in a given classification. It would be appropriate to clarify these issues.
Collapse
Affiliation(s)
- B J Tindall
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Tindall BJ. Updating Rule 15 of the International Code of Nomenclature of Bacteria. Int J Syst Evol Microbiol 2015; 65:2766-2768. [DOI: 10.1099/ijs.0.000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The wording of Rule 15 as originally published in the 1975 and 1990 revisions of the International Code of Nomenclature of Bacteria with regard to the definition of
nomenclatural types
was not clearly expressed and was modified by the Judicial Commission in 2008. However, there is a difference between the wording as proposed and that accepted. On reflection there is justification for re-examining both the proposed and the accepted wording.
Collapse
Affiliation(s)
- Brian J. Tindall
- Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2013-2014. Diagn Microbiol Infect Dis 2015; 83:82-8. [PMID: 26014276 DOI: 10.1016/j.diagmicrobio.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
Abstract
A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate and rapid reporting and communications regarding infectious agents of clinical significance. Microbial taxonomy in the age of molecular diagnostics and phylogenetics causes changes in this taxonomy at a rapid rate further complicating this process. This review focuses on the description of new species and classification changes proposed over the past 2 years.
Collapse
|