1
|
Aserse AA, Nimusiima J, Tumuhairwe JB, Yli-Halla M, Lindström K. Phylogenetic diversity of Rhizobium species recovered from nodules of common beans (Phaseolus vulgaris L.) in fields in Uganda: R. phaseoli, R. etli, and R. hidalgonense. FEMS Microbiol Ecol 2024; 100:fiae120. [PMID: 39270668 PMCID: PMC11556343 DOI: 10.1093/femsec/fiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
A total of 75 bacterial isolates were obtained from nodules of beans cultivated across 10 sites in six agro-ecological zones in Uganda. Using recA gene sequence analysis, 66 isolates were identified as members of the genus Rhizobium, while 9 were related to Agrobacterium species. In the recA gene tree, most Rhizobium strains were classified into five recognized species. Phylogenetic analysis based on six concatenated sequences (recA-rpoB-dnaK-glnII-gyrB-atpD) placed 32 representative strains into five distinct Rhizobium species, consistent with the species groups observed in the recA gene tree: R. phaseoli, R. etli, R. hidalgonense, R. ecuadorense, and R. sophoriradicis, with the first three being the predominant. The rhizobial strains grouped into three nodC subclades within the symbiovar phaseoli clade, encompassing strains from distinct phylogenetic groups. This pattern reflects the conservation of symbiotic genes, likely acquired through horizontal gene transfer among diverse rhizobial species. The 32 representative strains formed symbiotic relationships with host beans, while the Agrobacterium strains did not form nodules and lacked symbiotic genes. Multivariate analysis revealed that species distribution was influenced by the environmental factors of the sampling sites, emphasizing the need to consider these factors in future effectiveness studies to identify effective nitrogen-fixing strains for specific locations.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Ecosystems and Environmental Research programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| | - Jean Nimusiima
- Ecosystems and Environmental Research programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
- College of Agricultural and Environmental Sciences, Department of Agricultural Production, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - John Baptist Tumuhairwe
- College of Agricultural and Environmental Sciences, Department of Agricultural Production, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Kristina Lindström
- Ecosystems and Environmental Research programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| |
Collapse
|
2
|
Zhang J, Wang J, Feng Y, Brunel B, Zong X. Unearthing Optimal Symbiotic Rhizobia Partners from the Main Production Area of Phaseolus vulgaris in Yunnan. Int J Mol Sci 2024; 25:8511. [PMID: 39126082 PMCID: PMC11313401 DOI: 10.3390/ijms25158511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Phaseolus vulgaris is a globally important legume cash crop, which can carry out symbiotic nitrogen fixation with rhizobia. The presence of suitable rhizobia in cultivating soils is crucial for legume cropping, especially in areas beyond the plant-host native range, where soils may lack efficient symbiotic partners. We analyzed the distribution patterns and traits of native rhizobia associated with P. vulgaris in soils of Yunnan, where the common bean experienced a recent expansion. A total of 608 rhizobial isolates were tracked from soils of fifteen sampling sites using two local varieties of P. vulgaris. The isolates were discriminated into 43 genotypes as defined by IGS PCR-RFLP. Multiple locus sequence analysis based on recA, atpD and rpoB of representative strains placed them into 11 rhizobial species of Rhizobium involving Rhizobium sophorae, Rhizobium acidisoli, Rhizobium ecuadorense, Rhizobium hidalgonense, Rhizobium vallis, Rhizobium sophoriradicis, Rhizobium croatiense, Rhizobium anhuiense, Rhizobium phaseoli, Rhizobium chutanense and Rhizobium etli, and five unknown Rhizobium species; Rhizobium genosp. I~V. R. phaseoli and R. anhuiense were the dominant species (28.0% and 28.8%) most widely distributed, followed by R. croatiense (14.8%). The other rhizobial species were less numerous or site-specific. Phylogenies of nodC and nifH markers, were divided into two specific symbiovars, sv. phaseoli regardless of the species affiliation and sv. viciae associated with R. vallis. Through symbiotic effect assessment, all the tested strains nodulated both P. vulgaris varieties, often resulting with a significant greenness index (91-98%). However, about half of them exhibited better plant biomass performance, at least on one common bean variety, and two isolates (CYAH-6 and BLYH-15) showed a better symbiotic efficiency score. Representative strains revealed diverse abiotic stress tolerance to NaCl, acidity, alkalinity, temperature, drought and glyphosate. One strain efficient on both varieties and exhibiting stress abiotic tolerance (BLYH-15) belonged to R. genosp. IV sv. phaseoli, a species first found as a legume symbiont.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Brigitte Brunel
- Eco&Sols, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France;
| | - Xuxiao Zong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Martinez-Romero E, Peix A, Hungria M, Mousavi SA, Martinez-Romero J, Young P. Guidelines for the description of rhizobial symbiovars. Int J Syst Evol Microbiol 2024; 74:006373. [PMID: 38743471 PMCID: PMC11165908 DOI: 10.1099/ijsem.0.006373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.
Collapse
Affiliation(s)
| | - Alvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC por el IRNASA, Salamanca, Spain
| | | | | | | | - Peter Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
4
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
5
|
So many rhizobial partners, so little nitrogen fixed: The intriguing symbiotic promiscuity of common bean (Phaseolus vulgaris L.). Symbiosis 2022. [DOI: 10.1007/s13199-022-00831-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Aguilar OM, Collavino MM, Mancini U. Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication. Sci Rep 2022; 12:4591. [PMID: 35301409 PMCID: PMC8931114 DOI: 10.1038/s41598-022-08720-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Phaseolus vulgaris (common bean), having a proposed Mexican origin within the Americas, comprises three centers of diversification: Mesoamerica, the southern Andes, and the Amotape-Huancabamba Depression in Peru-Ecuador. Rhizobium etli is the predominant rhizobium found symbiotically associated with beans in the Americasalthough closely related Rhizobium phylotypes have also been detected. To investigate if symbiosis between bean varieties and rhizobia evolved affinity, firstly nodulation competitiveness was studied after inoculation with a mixture of sympatric and allopatric rhizobial strains isolated from the respective geographical regions. Rhizobia strains harboring nodC types α and [Formula: see text], which were found predominant in Mexico and Ecuador, were comparable in nodule occupancy at 50% of each in beans from the Mesoamerican and Andean gene pools, but it is one of those two nodC types which clearly predominated in Ecuadorian-Peruvian beans as well as in Andean beans nodC type [Formula: see text] predominated the sympatric nodC type δ. The results indicated that those beans from Ecuador-Peru and Andean region, respectively exhibited no affinity for nodulation by the sympatric rhizobial lineages that were found to be predominant in bean nodules formed in those respective areas. Unlike the strains isolated from Ecuador, Rhizobium etli isolated from Mexico as well from the southern Andes was highly competitive for nodulation in beans from Ecuador-Peru, and quite similarly competitive in Mesoamerican and Andean beans. Finally, five gene products associated with symbiosis were examined to analyze variations that could be correlated with nodulation competitiveness. A small GTPase RabA2, transcriptional factors NIN and ASTRAY, and nodulation factor receptors NFR1 and NFR5- indicated high conservation but NIN, NFR1 and NFR5 of beans representative of the Ecuador-Peru genetic pool clustered separated from the Mesoamerican and Andean showing diversification and possible different interaction. These results indicated that both host and bacterial genetics are important for mutual affinity, and that symbiosis is another trait of legumes that could be sensitive to evolutionary influences and local adaptation.
Collapse
Affiliation(s)
- O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| | - Mónica M Collavino
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - Ulises Mancini
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
7
|
Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Sci Rep 2021; 11:8674. [PMID: 33883620 PMCID: PMC8060271 DOI: 10.1038/s41598-021-88051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Phaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.
Collapse
Affiliation(s)
- Evdoxia Efstathiadou
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Anastasia P Tampakaki
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece.
| |
Collapse
|
8
|
Hailu Gunnabo A, Geurts R, Wolde-meskel E, Degefu T, E. Giller K, van Heerwaarden J. Phylogeographic distribution of rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. FEMS Microbiol Ecol 2021; 97:fiab046. [PMID: 33724341 PMCID: PMC8016211 DOI: 10.1093/femsec/fiab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/13/2021] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are soilborne bacteria that form symbiotic relations with legumes and fix atmospheric nitrogen. The nitrogen fixation potential depends on several factors such as the type of host and symbionts and on environmental factors that affect the distribution of rhizobia. We isolated bacteria nodulating common bean in Southern Ethiopia to evaluate their genetic diversity and phylogeography at nucleotide, locus (gene/haplotype) and species levels of genetic hierarchy. Phylogenetically, eight rhizobial genospecies (including previous collections) were determined that had less genetic diversity than found among reference strains. The limited genetic diversity of the Ethiopian collections was due to absence of many of the Rhizobium lineages known to nodulate beans. Rhizobium etli and Rhizobiumphaseoli were predominant strains of bean-nodulating rhizobia in Ethiopia. We found no evidence for a phylogeographic pattern in strain distribution. However, joint analysis of the current and previous collections revealed differences between the two collections at nucleotide level of genetic hierarchy. The differences were due to genospecies Rhizobium aethiopicum that was only isolated in the earlier collection.
Collapse
Affiliation(s)
- Ashenafi Hailu Gunnabo
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Endalkachew Wolde-meskel
- World Agroforestry Centre (ICRAF), c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, 4 Ethiopia
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, c/o ILRI Campus, Gurd Shola PO Box 5689, Addis Ababa, Ethiopia
| | - Ken E. Giller
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| | - Joost van Heerwaarden
- Plant Production Systems Group, Wageningen University & Research, Wageningen, Gelderland, The Netherlands, Postal code: 6708 PB
| |
Collapse
|
9
|
Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. Plant microbiota modified by plant domestication. Syst Appl Microbiol 2020; 43:126106. [PMID: 32847781 DOI: 10.1016/j.syapm.2020.126106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022]
Abstract
Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.
Collapse
Affiliation(s)
| | | | - Nataly Taco-Taype
- Laboratorio de Ecología Microbiana, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | - Doris Zuñiga-Dávila
- Laboratorio de Ecología Microbiana, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
10
|
Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol 2020; 70:4233-4244. [PMID: 32568030 DOI: 10.1099/ijsem.0.004278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium, but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense, Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA-DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Anderson José Scherer
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
11
|
Shamseldin A, Velázquez E. The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World J Microbiol Biotechnol 2020; 36:63. [PMID: 32314065 DOI: 10.1007/s11274-020-02839-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Phaseolus vulgaris L. (common bean) is a legume indigenous to American countries currently cultivated in all continents, which is nodulated by different rhizobial species and symbiovars. Most of species able to nodulate this legume worldwide belong to the genus Rhizobium, followed by those belonging to the genera Ensifer (formerly Sinorhizobium) and Pararhizobium (formerly Rhizobium) and minority by species of the genus Bradyrhizobium. All these genera belong to the phylum alpha-Proteobacteria, but the nodulation of P. vulgaris has also been reported for some species belonging to Paraburkholderia and Cupriavidus from the beta-Proteobacteria. Several species nodulating P. vulgaris were originally isolated from nodules of this legume in American countries and are linked to the symbiovars phaseoli and tropici, which are currently present in other continents probably because they were spread in their soils together with the P. vulgaris seeds. In addition, this legume can be nodulated by species and symbiovars originally isolated from nodules of other legumes due its high promiscuity, a concept currently related with the ability of a legume to be nodulated by several symbiovars rather than by several species. In this article we review the species and symbiovars able to nodulate P. vulgaris in different countries and continents and the challenges on the study of the P. vulgaris endosymbionts diversity in those countries where they have not been studied yet, that will allow to select highly effective rhizobial strains in order to guarantee the success of P. vulgaris inoculation.
Collapse
Affiliation(s)
- Abdelaal Shamseldin
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt.
| | - Encarna Velázquez
- Departamento de Microbiología Y Genética and CIALE, Universidad de Salamanca, Salamanca, Spain.,Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
12
|
Chibeba AM, Pereira CS, Antunes JEL, Ribeiro RA, de Almeida Lopes AC, Gomes RLF, Hungria M, Araujo ASF. Polyphasic characterization of nitrogen-fixing and co-resident bacteria in nodules of Phaseolus lunatus inoculated with soils from Piauí State, Northeast Brazil. Symbiosis 2020. [DOI: 10.1007/s13199-020-00672-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Rajnovic I, Ramírez-Bahena MH, Sánchez-Juanes F, González-Buitrago JM, Kajic S, Peix Á, Velázquez E, Sikora S. Phylogenetic diversity of rhizobia nodulating Phaseolus vulgaris in Croatia and definition of the symbiovar phaseoli within the species Rhizobium pisi. Syst Appl Microbiol 2019; 42:126019. [PMID: 31635886 DOI: 10.1016/j.syapm.2019.126019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 11/27/2022]
Abstract
Phaseolus vulgaris is a legume indigenous to America which is currently cultivated in Europe including countries located at the Southeast of this continent, such as Croatia, where several local landraces are cultivated, most of them of Andean origin. In this work we identify at species and symbiovar levels several fast-growing strains able to form effective symbiosis with P. vulgaris in different Croatian soils. The identification at species level based on MALDI-TOF MS and core gene sequence analysis showed that most of these strains belong to the species R. leguminosarum, R. hidalgonense and R. pisi. In addition, several strains belong to putative new species phylogenetically close to R. ecuadorense and R. sophoriradicis. All Croatian strains belong to the symbiovar phaseoli and harbour the α and γ nodC alleles typical for American strains of this symbiovar. Nevertheless, most of Croatian strains harboured the γ nodC gene allele supporting its Andean origin since it is also dominant in other European countries, where Andean cultivars of P. vulgaris are traditionally cultivated, as occurs in Spain. The only strains harbouring the α nodC allele belong to R. hidalgonense and R. pisi, this last only containing the symbiovars viciae and trifolii to date. This is the first report about the presence in Europe of the species R. hidalgonense, the nodulation of P. vulgaris by R. pisi and the existence of the symbiovar phaseoli within this species. These results significantly increase the knowledge of the biogeography of Rhizobium-P. vulgaris symbiosis.
Collapse
Affiliation(s)
- Ivana Rajnovic
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - José-Manuel González-Buitrago
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - Sanja Kajic
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain; Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain.
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain; Departmento de Microbiología y Genética and CIALE, Universidad de Salamanca, Salamanca, Spain
| | - Sanja Sikora
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Huo Y, Tong W, Wang J, Wang F, Bai W, Wang E, Shi P, Chen W, Wei G. Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 2019; 69:2049-2056. [PMID: 31091180 DOI: 10.1099/ijsem.0.003430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, rod-shaped bacterial strains (C5T and C16), isolated from root nodules of Phaseolus vulgaris L. in Jiangxi Province, PR China, were characterized by using a polyphasic taxonomical approach. The phylogenetic analysis of the 16S rRNA gene and three concatenated housekeeping genes (recA-glnII-atpD) revealed that C5T and C16 were members of the genus Rhizobium, yet were distinct from known species. The case for strain C5T representing a novel species was supported by genomic results. Pairwise digital DNA-DNA hybridization and average nucleotide identity values were much lower than the proposed and generally accepted species boundaries. The genome-based phylogenetic tree reconstructed by using the up-to-date bacterial core gene set consisting of 92 genes showed that the strains formed a monophyletic branch, further supporting this result. The symbiotic genes of nodC and nifH were identified in both strains; each could nodulate Phaseolus vulgaris and Glycine max but not Leucaena leucocephala, Pisum sativum or Medicago sativa plants. Major cellular fatty acids of C5T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 58.8 %), C18 : 1 ω7c 11-methyl (14.2 %) and C18 : 0 (8.1 %). The DNA G+C content of C5T was 61.4 mol%. Based on these genomic, chemotaxonomic and phenotypic characteristics, we propose a novel species: Rhizobium chutanense sp. nov. The type strain is C5T (=CCTCC AB 2018143T=LMG 30777T).
Collapse
Affiliation(s)
- Yunyun Huo
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Wenjun Tong
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Juanjuan Wang
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Fang Wang
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Wenqing Bai
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Entao Wang
- 3Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Peng Shi
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
| | - Weimin Chen
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
| | - Gehong Wei
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Shaanxi, PR China
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, PR China
| |
Collapse
|
15
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
16
|
González V, Santamaría RI, Bustos P, Pérez-Carrascal OM, Vinuesa P, Juárez S, Martínez-Flores I, Cevallos MÁ, Brom S, Martínez-Romero E, Romero D. Phylogenomic Rhizobium Species Are Structured by a Continuum of Diversity and Genomic Clusters. Front Microbiol 2019; 10:910. [PMID: 31114559 PMCID: PMC6503217 DOI: 10.3389/fmicb.2019.00910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/10/2019] [Indexed: 01/07/2023] Open
Abstract
The bacterial genus Rhizobium comprises diverse symbiotic nitrogen-fixing species associated with the roots of plants in the Leguminosae family. Multiple genomic clusters defined by whole genome comparisons occur within Rhizobium, but their equivalence to species is controversial. In this study we investigated such genomic clusters to ascertain their significance in a species phylogeny context. Phylogenomic inferences based on complete sets of ribosomal proteins and stringent core genome markers revealed the main lineages of Rhizobium. The clades corresponding to R. etli and R. leguminosarum species show several genomic clusters with average genomic nucleotide identities (ANI > 95%), and a continuum of divergent strains, respectively. They were found to be inversely correlated with the genetic distance estimated from concatenated ribosomal proteins. We uncovered evidence of a Rhizobium pangenome that was greatly expanded, both in its chromosomes and plasmids. Despite the variability of extra-chromosomal elements, our genomic comparisons revealed only a few chromid and plasmid families. The presence/absence profile of genes in the complete Rhizobium genomes agreed with the phylogenomic pattern of species divergence. Symbiotic genes were distributed according to the principal phylogenomic Rhizobium clades but did not resolve genome clusters within the clades. We distinguished some types of symbiotic plasmids within Rhizobium that displayed different rates of synonymous nucleotide substitutions in comparison to chromosomal genes. Symbiotic plasmids may have been repeatedly transferred horizontally between strains and species, in the process displacing and substituting pre-existing symbiotic plasmids. In summary, the results indicate that Rhizobium genomic clusters, as defined by whole genomic identities, might be part of a continuous process of evolutionary divergence that includes the core and the extrachromosomal elements leading to species formation.
Collapse
Affiliation(s)
- Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa Isela Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Irma Martínez-Flores
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Brom
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - David Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
17
|
Ramírez-Puebla ST, Hernández MAR, Guerrero Ruiz G, Ormeño-Orrillo E, Martinez-Romero JC, Servín-Garcidueñas LE, Núñez-de la Mora A, Amescua-Villela G, Negrete-Yankelevich S, Martínez-Romero E. Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Syst Appl Microbiol 2018; 42:373-382. [PMID: 30612723 DOI: 10.1016/j.syapm.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
Phaseolus dumosus is an endemic species from mountain tops in Mexico that was found in traditional agriculture areas in Veracruz, Mexico. P. dumosus plants were identified by ITS sequences and their nodules were collected from agricultural fields or from trap plant experiments in the laboratory. Bacteria from P. dumosus nodules were identified as belonging to the phaseoli-etli-leguminosarum (PEL) or to the tropici group by 16S rRNA gene sequences. We obtained complete closed genomes from two P. dumosus isolates CCGE531 and CCGE532 that were phylogenetically placed within the tropici group but with a distinctive phylogenomic position and low average nucleotide identity (ANI). CCGE531 and CCGE532 had common phenotypic characteristics with tropici type B rhizobial symbionts. Genome synteny analysis and ANI showed that P. dumosus isolates had different chromids and our analysis suggests that chromids have independently evolved in different lineages of the Rhizobium genus. Finally, we considered that P. dumosus and Phaseolus vulgaris plants belong to the same cross-inoculation group since they have conserved symbiotic affinites for rhizobia.
Collapse
Affiliation(s)
| | | | | | - Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | | | | | |
Collapse
|
18
|
Tong W, Li X, Huo Y, Zhang L, Cao Y, Wang E, Chen W, Tao S, Wei G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst Appl Microbiol 2018; 41:300-310. [PMID: 29576402 DOI: 10.1016/j.syapm.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Due to the wide cultivation of bean (Phaseolus vulgaris L.), rhizobia associated with this plant have been isolated from many different geographical regions. In order to investigate the species diversity of bean rhizobia, comparative genome sequence analysis was performed in the present study for 69 Rhizobium strains mainly isolated from root nodules of bean and clover (Trifolium spp.). Based on genome average nucleotide identity, digital DNA:DNA hybridization, and phylogenetic analysis of 1,458 single-copy core genes, these strains were classified into 28 clusters, consistent with their species definition based on multilocus sequence analysis (MLSA) of atpD, glnII, and recA. The bean rhizobia were found in 16 defined species and nine putative novel species; in addition, 35 strains previously described as Rhizobium etli, Rhizobium phaseoli, Rhizobium vallis, Rhizobium gallicum, Rhizobium leguminosarum and Rhizobium spp. should be renamed. The phylogenetic patterns of symbiotic genes nodC and nifH were highly host-specific and inconsistent with the genomic phylogeny. Multiple symbiovars (sv.) within the Rhizobium species were found as a common feature: sv. phaseoli, sv. trifolii and sv. viciae in Rhizobium anhuiense; sv. phaseoli and sv. mimosae in Rhizobium sophoriradicis/R. etli/Rhizobium sp. III; sv. phaseoli and sv. trifolii in Rhizobium hidalgonense/Rhizobium acidisoli; sv. phaseoli and sv. viciae in R. leguminosarum/Rhizobium sp. IX; sv. trifolii and sv. viciae in Rhizobium laguerreae. Thus, genomic comparison revealed great species diversity in bean rhizobia, corrected the species definition of some previously misnamed strains, and demonstrated the MLSA a valuable and simple method for defining Rhizobium species.
Collapse
Affiliation(s)
- Wenjun Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunyun Huo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Mwenda GM, O'Hara GW, De Meyer SE, Howieson JG, Terpolilli JJ. Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris-nodulating rhizobia in Kenya. Syst Appl Microbiol 2018; 41:291-299. [PMID: 29571921 PMCID: PMC6052332 DOI: 10.1016/j.syapm.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/12/2022]
Abstract
Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.
Collapse
Affiliation(s)
- George M Mwenda
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
| | - Graham W O'Hara
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Sofie E De Meyer
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - John G Howieson
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Jason J Terpolilli
- Centre for Rhizobium Studies, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
20
|
Polyphasic characterization of rhizobia microsymbionts of common bean [Phaseolus vulgaris (L.)] isolated in Mato Grosso do Sul, a hotspot of Brazilian biodiversity. Symbiosis 2018. [DOI: 10.1007/s13199-018-0543-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M. Rhizobium esperanzae sp. nov., a N 2 -fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 2017; 67:3937-3945. [DOI: 10.1099/ijsem.0.002225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrey Barbosa Cordeiro
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020, Brasília, Distrito Federal, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI I Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil
| | - Luisa Caroline Ferraz Helene
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020, Brasília, Distrito Federal, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, 86051-990, Londrina, Paraná, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, 86051-990, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI I Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
| |
Collapse
|
22
|
Genome Sequence of Rhizobium esperanzae Type Strain CNPSo 668, Isolated from Phaseolus vulgaris Nodules in Mexico. GENOME ANNOUNCEMENTS 2017; 5:5/35/e00935-17. [PMID: 28860263 PMCID: PMC5578861 DOI: 10.1128/genomea.00935-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhizobium esperanzae CNPSo 668T is a nitrogen-fixing symbiont of Phaseolus vulgaris isolated from Mexican soils. Its genome is estimated at 6,294,057 bp, with 6,219 coding sequences (CDSs) showing higher similarity (92.9%) with Rhizobium etli. Three copies of the regulatory nodD, in addition to other nodulation genes, should define its host specificity.
Collapse
|
23
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485-2494. [PMID: 28771120 DOI: 10.1099/ijsem.0.002144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
24
|
Dall'Agnol RF, Bournaud C, de Faria SM, Béna G, Moulin L, Hungria M. Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol 2017; 93:3045887. [PMID: 28334155 DOI: 10.1093/femsec/fix027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 11/13/2022] Open
Abstract
Some species of the genus Paraburkholderia that are able to nodulate and fix nitrogen in symbiosis with legumes are called β-rhizobia and represent a group of ecological and biotechnological importance. We used Mimosa pudica and Phaseolus vulgaris to trap 427 rhizobial isolates from rhizospheric soil of Mimoseae trees in the Brazilian Atlantic Forest. Eighty-four representative strains were selected according to the 16S rRNA haplotypes and taxonomically characterized using a concatenated 16S rRNA-recA phylogeny. Most strains were assembled in the genus Paraburkholderia, including Paraburkholderia sabiae and Pa. nodosa. Mesorhizobium (α-rhizobia) and Cupriavidus (β-rhizobia) were also isolated, but in smaller proportions. Multilocus sequence analysis and BOX-PCR analyses indicated that six clusters of Paraburkholderia represent potential new species. In the phylogenetic analysis of the nodC gene, the majority of the strains were positioned in the same groups as in the 16S rRNA-recA tree, indicative of stability and vertical inheritance, but we also identified horizontal transfer of nodC in Pa. sabiae. All α- and β-rhizobial species were trapped by both legumes, although preferences of the host plants for specific rhizobial species have been observed.
Collapse
Affiliation(s)
- Rebeca Fuzinatto Dall'Agnol
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 231, 86001-970, Londrina, PR, Brazil.,Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 10.011, 86057-970, Londrina, PR, Brazil.,IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France
| | - Caroline Bournaud
- IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France.,Embrapa Recursos Genéticos e Biotecnologia, LIMPP Laboratory, C.P. 02372, 70770-917, Brasília, DF, Brazil
| | | | - Gilles Béna
- IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France.,IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Lionel Moulin
- IRD, Cirad, Univ. Montpellier, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet 34398 Montpellier, France.,IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Mariangela Hungria
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 231, 86001-970, Londrina, PR, Brazil
| |
Collapse
|
25
|
Muñoz-Azcarate O, González AM, Santalla M. Natural rhizobial diversity helps to reveal genes and QTLs associated with biological nitrogen fixation in common bean. AIMS Microbiol 2017; 3:435-466. [PMID: 31294170 PMCID: PMC6604995 DOI: 10.3934/microbiol.2017.3.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/25/2017] [Indexed: 11/18/2022] Open
Abstract
Common bean is one of the most important crops for human feed, and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean.
Collapse
Affiliation(s)
- Olaya Muñoz-Azcarate
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| | - Ana M González
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| | - Marta Santalla
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC. P.O. Box 28. 36080 Pontevedra, Spain
| |
Collapse
|
26
|
Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequence of type strain HBR26 T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 2017; 12:14. [PMID: 28163823 PMCID: PMC5278577 DOI: 10.1186/s40793-017-0220-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022] Open
Abstract
Rhizobium aethiopicum sp. nov. is a newly proposed species within the genus Rhizobium. This species includes six rhizobial strains; which were isolated from root nodules of the legume plant Phaseolus vulgaris growing in soils of Ethiopia. The species fixes nitrogen effectively in symbiosis with the host plant P. vulgaris, and is composed of aerobic, Gram-negative staining, rod-shaped bacteria. The genome of type strain HBR26T of R. aethiopicum sp. nov. was one of the rhizobial genomes sequenced as a part of the DOE JGI 2014 Genomic Encyclopedia project designed for soil and plant-associated and newly described type strains. The genome sequence is arranged in 62 scaffolds and consists of 6,557,588 bp length, with a 61% G + C content and 6221 protein-coding and 86 RNAs genes. The genome of HBR26T contains repABC genes (plasmid replication genes) homologous to the genes found in five different Rhizobium etli CFN42T plasmids, suggesting that HBR26T may have five additional replicons other than the chromosome. In the genome of HBR26T, the nodulation genes nodB, nodC, nodS, nodI, nodJ and nodD are located in the same module, and organized in a similar way as nod genes found in the genome of other known common bean-nodulating rhizobial species. nodA gene is found in a different scaffold, but it is also very similar to nodA genes of other bean-nodulating rhizobial strains. Though HBR26T is distinct on the phylogenetic tree and based on ANI analysis (the highest value 90.2% ANI with CFN42T) from other bean-nodulating species, these nod genes and most nitrogen-fixing genes found in the genome of HBR26T share high identity with the corresponding genes of known bean-nodulating rhizobial species (96–100% identity). This suggests that symbiotic genes might be shared between bean-nodulating rhizobia through horizontal gene transfer. R. aethiopicum sp. nov. was grouped into the genus Rhizobium but was distinct from all recognized species of that genus by phylogenetic analyses of combined sequences of the housekeeping genes recA and glnII. The closest reference type strains for HBR26T were R. etli CFN42T (94% similarity of the combined recA and glnII sequences) and Rhizobium bangladeshense BLR175T (93%). Genomic ANI calculation based on protein-coding genes also revealed that the closest reference strains were R. bangladeshense BLR175T and R. etli CFN42T with ANI values 91.8 and 90.2%, respectively. Nevertheless, the ANI values between HBR26T and BLR175T or CFN42T are far lower than the cutoff value of ANI (> = 96%) between strains in the same species, confirming that HBR26T belongs to a novel species. Thus, on the basis of phylogenetic, comparative genomic analyses and ANI results, we formally propose the creation of R. aethiopicum sp. nov. with strain HBR26T (=HAMBI 3550T=LMG 29711T) as the type strain. The genome assembly and annotation data is deposited in the DOE JGI portal and also available at European Nucleotide Archive under accession numbers FMAJ01000001-FMAJ01000062.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Department of Environmental Sciences, University of Helsinki, Viikinkaari 2a, Helsinki, Finland
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, USA
| | | | - William B Whitman
- Department of Microbiology, University of Georgia, Biological Sciences Building, Athens, USA
| | - Kristina Lindström
- Department of Environmental Sciences, University of Helsinki, Viikinkaari 2a, Helsinki, Finland
| |
Collapse
|
27
|
Xu L, Shi J, Li C, Zhu S, Li B. Rhizobium hedysari sp. nov., a novel species isolated from a root nodule of Hedysarum multijugum in China. Antonie van Leeuwenhoek 2017; 110:479-488. [DOI: 10.1007/s10482-016-0817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
|
28
|
Zinga MK, Jaiswal SK, Dakora FD. Presence of diverse rhizobial communities responsible for nodulation of common bean (Phaseolus vulgaris) in South African and Mozambican soils. FEMS Microbiol Ecol 2016; 93:fiw236. [PMID: 27915286 DOI: 10.1093/femsec/fiw236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/22/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
The diversity and phylogeny of root-nodule bacteria isolated from common bean grown in Mozambique and different provinces of South Africa was studied by restriction fragment length polymorphism (RFLP) and phylogenetic analysis. The combined restriction banding pattern of 16S rRNA and nifH profile-generated dendrogram grouped all test isolates into four major clusters with XXI restriction groups and three clusters with VIII restriction groups. Location-based clustering was observed with the 16S rRNA RFLP analysis. Phylogenetic analysis of 16S rRNA, glnII, gyrB and gltA sequences showed that common bean was nodulated specifically by Rhizobium etli in Mozambican soils, and by a diverse group of Rhizobium species in South African soils (e.g. R. etli, R. phaseoli, R. sophoriradicis, R. leucaenae and novel group of Rhizobium spp.). Isolates from the Eastern Cape region of South Africa were dominated by R. leucaenae Overall, the results suggested high nodulation promiscuity of common bean grown in Southern Africa. The nifH and nodC sequence analysis classified all the test isolates with R. etli group, except for isolates TUTPVSA117, TUTPVSA114 and TUTPVSA110 which delineated with R. tropici group. This finding was inconsistent with the phylogram of the housekeeping genes, and is probably an indication of horizontal gene transfer among the Rhizobium isolates tested.
Collapse
Affiliation(s)
- Mwajuma K Zinga
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, Arcadia Campus, Pretoria 0001, South Africa
| | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, Arcadia Campus, Pretoria 0001, South Africa
| |
Collapse
|
29
|
Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2016; 199:97-104. [DOI: 10.1007/s00203-016-1281-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
|
30
|
Dall'Agnol RF, Plotegher F, Souza RC, Mendes IC, Dos Reis Junior FB, Béna G, Moulin L, Hungria M. Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian 'Cerradão'. FEMS Microbiol Ecol 2016; 92:fiw108. [PMID: 27199345 DOI: 10.1093/femsec/fiw108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/14/2022] Open
Abstract
The bacterial genus Burkholderia comprises species occupying several habitats, including a group of symbionts of leguminous plants-also called beta-rhizobia-that has been recently ascribed to the new genus Paraburkholderia We used common bean (Phaseolus vulgaris L.) plants to trap rhizobia from an undisturbed soil of the Brazilian Cerrado under the vegetation type 'Cerradão'. Genetic characterization started with the analyses of 181 isolates by BOX-PCR, where the majority revealed unique profiles, indicating high inter- and intra-species diversity. Restriction fragment length polymorphism-PCR of the 16S rRNA of representative strains of the BOX-PCR groups indicated two main clusters, and gene-sequencing analysis identified the minority (27%) as Rhizobium and the majority (73%) as Paraburkholderia Phylogenetic analyses of the 16S rRNA and housekeeping (recA and gyrB) genes positioned all strains of the second cluster in the species P. nodosa, and the phylogeny of a symbiotic gene-nodC-was in agreement with the conserved genes. All isolates were stable vis-à-vis nodulating common bean, but, in general, with a low capacity for fixing N2, although some effective strains were identified. The predominance of P. nodosa might be associated with the edaphic properties of the Cerrado biome, and might represent an important role in terms of maintenance of the ecosystem, which is characterized by acid soils with high saturation of aluminum and low N2 content.
Collapse
Affiliation(s)
- Rebeca F Dall'Agnol
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, PR, Brazil
| | - Fábio Plotegher
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil
| | - Renata C Souza
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil Department of Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990, Curitiba, PR, Brazil
| | - Iêda C Mendes
- Department of Soil Microbiology, Embrapa Cerrados, C.P. 08223, 73301-970, Planaltina, DF, Brazil
| | - Fábio B Dos Reis Junior
- Department of Soil Microbiology, Embrapa Cerrados, C.P. 08223, 73301-970, Planaltina, DF, Brazil
| | - Gilles Béna
- IRD, Cirad, University of Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Lionel Moulin
- IRD, Cirad, University of Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Mariangela Hungria
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 231, 86001-970, Londrina, PR, Brazil Department of Microbiology, Universidade Federal do Paraná, C.P. 19031, 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
31
|
Rouhrazi K, Khodakaramian G, Velázquez E. Phylogenetic diversity of rhizobial species and symbiovars nodulatingPhaseolus vulgarisin Iran. FEMS Microbiol Lett 2016; 363:fnw024. [DOI: 10.1093/femsle/fnw024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 11/12/2022] Open
|
32
|
Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS, Martínez-Romero E, Hungria M. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424-4433. [PMID: 26362866 DOI: 10.1099/ijsem.0.000592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Department of Microbiology, C.P. 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Mariangela Hungria
- Universidade Estadual de Londrina, Department of Microbiology, C.P. 10.011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil
| |
Collapse
|
33
|
Genome Sequence of Rhizobium ecuadorense Strain CNPSo 671T, an Indigenous N2-Fixing Symbiont of the Ecuadorian Common Bean (Phaseolus vulgaris L.) Genetic Pool. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01058-15. [PMID: 26383667 PMCID: PMC4574372 DOI: 10.1128/genomea.01058-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhizobium ecuadorense CNPSo 671T was isolated from a common bean nodule in Ecuador. The draft genome brings novelty about indigenous rhizobial species in centers of genetic diversity of the legume.
Collapse
|