1
|
Halorussus vallis sp. nov., Halorussus aquaticus sp. nov., Halorussus gelatinilyticus sp. nov., Halorussus limi sp. nov., Halorussus salilacus sp. nov., Halorussus salinisoli sp. nov.: six extremely halophilic archaea isolated from solar saltern, salt lake and saline soil. Extremophiles 2022; 26:32. [PMID: 36239851 DOI: 10.1007/s00792-022-01280-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022]
Abstract
Six novel halophilic archaeal strains of XZYJT10T, XZYJ18T, XZYJT40T, XZYJT49T, YCN54T and LT46T were isolated from a solar saltern in Tibet, a salt lake in Shanxi, and a saline soil in Xinjiang, China. Sequence similarities of 16S rRNA and rpoB' genes among strains XZYJT10T, XZYJ18T, XZYJT40T, XZYJT49T, YCN54T, LT46T and current members of Halorussus were 90.6-97.8% and 87.8-96.4%, respectively. The average nucleotide identity and in silico DNA-DNA hybridization values among these six strains and current Halorussus members were in the range of 76.5-87.5% and 21.0-33.8%, respectively. These values were all below the species boundary threshold values. The phylogenomic tree based on 122 conserved archaeal protein marker genes revealed that the six novel strains formed individual distinct branches and clustered tightly with Halorussus members. Several phenotypic characteristics distinguished the six strains from current Halorussus members. Polar lipid analysis showed that the six novel strains contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and two to three glycolipids. Phenotypic, chemotaxonomic and phylogenetic properties showed that the six strains represented six novel species within the genus Halorussus, for which the names Halorussus vallis sp. nov., Halorussus aquaticus sp. nov., Halorussus gelatinilyticus sp. nov., Halorussus limi sp. nov., Halorussus salilacus sp. nov., and Halorussus salinisoli sp. nov. are proposed.
Collapse
|
2
|
Han D, Cui HL. Halorussus halobius sp. nov., Halorussus marinus sp. nov. and Halorussus pelagicus sp. nov., isolated from salted brown alga Laminaria. Int J Syst Evol Microbiol 2022; 72. [PMID: 35389335 DOI: 10.1099/ijsem.0.005313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Four halophilic archaeal strains, designated HD8-83T, LYG-36T, DLLS-82 and RC-68T, were isolated from the salted brown alga Laminaria of three different origins (Dalian, Lianyungang, Dalian and Rongcheng) in PR China. All strains had pleomorphic rod cells that were motile, lysed in distilled water, stained Gram-negative, and formed red-pigmented colonies on agar plate (except for DLLS-82, which formed white colonies). Based on phylogenetic analyses of the 16S rRNA genes, strain HD8-83T was closely related to Halorussus litoreus HD8-51T (97.9 % similarity), strain LYG-36T and DLLS-82 to Halorussus rarus TBN4T (94.4 % and 94.7 % similarities, respectively), and strain RC-68T to Halorussus salinus YJ-37-HT (96.9 % similarity). Results of phylogenetic analyses based on rpoB' genes and 728 concatenated single-copy orthologous clusters also showed that these strains formed three different branches and clustered tightly with the Halorussus members. The average nucleotide identity, average amino acid identity and in silico DNA-DNA hybridization values between strains LYG-36T and DLLS-82 were 98.9, 98 and 92.4%, showing that they were different strains of the same species. While those values between the isolates and other Halorussus members were below 84.7, 82.9 and 28.9 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strains HD8-83T, LYG-36T, DLLS-82 and RC-68T represent three novel species of the genus Halorussus for which the names Halorussus halobius sp. nov. (type strain: HD8-83T=CGMCC 1.15334T=JCM 31110T), Halorussus marinus sp. nov. (type strain: LYG-36T=CGMCC 1.13606T=JCM 32952T; reference strain: DLLS-82=CGMCC 1.13604=JCM 32951) and Halorussus pelagicus sp. nov. (type strain: RC-68T=CGMCC 1.13609T=JCM 32953T) are proposed.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, PR China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
3
|
Ding Y, Han D, Cui HL. Halorussus halophilus sp. nov., A Novel Halophilic Archaeon Isolated from a Marine Solar Saltern. Curr Microbiol 2020; 77:1321-1327. [PMID: 32095891 DOI: 10.1007/s00284-020-01921-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The halophilic archaeal strain ZS-3T (= CGMCC 1.12866T = JCM 30239T) was isolated from a sediment sample of Zhoushan marine solar saltern, P. R. China. Phylogenetic analyses based on 16S rRNA, rpoB' genes and the concatenation of 738 protein sequences reveal that strain ZS-3T was related to members of the genus Halorussus. The OrthoANI and in silico DDH values between strain ZS-3T and the current Halorussus members are much lower than the threshold values proposed as the species boundary (ANI 95-96% and in silico DDH 70%), suggesting that strain ZS-3T represents a novel species of Halorussus (Halorussus halophilus sp. nov.). Diverse phenotypic characteristics differentiate strain ZS-3T from current Halorussus members. Since the strain expressed diverse hydrolyzing enzyme activity, its complete genome was sequenced. The genome of strain ZS-3T was found to be 4,450,731 bp with total GC content of 61.51%, and comprises one chromosome and three plasmids. A total of 4694 protein coding genes, 43 tRNA genes and 6 rRNA genes were predicted. A CRISPR-Cas system was also detected. The genome encodes sixteen putative glycoside hydrolases, nine extracellular proteases, seventeen aminopeptidases, seven carboxypeptidases, one esterase and one nitrite reductase. The exploration of the hydrolase genes may expand our understanding of adapted mechanism of halophilic archaea surviving optimally in hypersaline environments where containing organic matter. Meanwhile, various hydrolyzing enzymes may extend this microorganism for further applications in salt-based fermentation.
Collapse
Affiliation(s)
- Yi Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Dong Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
4
|
Han D, Zhu L, Cui HL. Halorussus litoreus sp. nov., isolated from the salted brown alga Laminaria. Int J Syst Evol Microbiol 2019; 69:767-772. [PMID: 30652965 DOI: 10.1099/ijsem.0.003233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
A halophilic archaeal strain, designated HD8-51T, was isolated from the salted brown alga Laminaria. Cells of strain HD8-51T were motile, pleomorphic coccoid or ovoid, and formed red-pigmented colonies on agar plates. Strain HD8-51T grew optimally at 3.1 M NaCl, 0.03 M MgCl2, 30 °C and pH 7.0. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 0.85 M. Based on phylogenetic analyses of the 16S rRNA and rpoB' genes, strain HD8-51T was most closely related to members of the genus Halorussus (92.3-95.6 % and 89.2-91.7% similarities, respectively). The average nucleotide identity values and in silico DNA-DNA hybridization values between strain HD8-51T and Halorussus rarus TBN4T were 81.69 and 24.5 %, respectively. The major polar lipids of strain HD8-51T were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and five glycolipids, sulfated galactosyl mannosyl glucosyl diether (S-TGD-1), galactosyl mannosyl glucosyl diether (TGD-1), sulfated mannosyl glucosyl diether (S-DGD-1), mannosyl glucosyl diether (DGD-1) and diglycosyl diether (DGD-2). The DNA G+C content was 65.9 mol%. Based on phenotypic, chemotaxonomic and phylogenetic properties, strain HD8-51T represents a novel species of the genus Halorussus, for which the name Halorussus litoreus sp. nov. is proposed. The type strain is HD8-51T (=CGMCC 1.15333T=JCM 31109T).
Collapse
Affiliation(s)
- Dong Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
5
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Xu JQ, Xu WM, Li Y, Zhou Y, Lü ZZ, Hou J, Zhu L, Cui HL. Halorussus salinus sp. nov., isolated from a marine solar saltern. Arch Microbiol 2016; 198:957-961. [PMID: 27290647 DOI: 10.1007/s00203-016-1253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 01/23/2023]
Abstract
A halophilic archaeal strain YJ-37-HT was isolated from Yangjiang marine solar saltern, China. Cells were pleomorphic rods, stained Gram negative and formed red-pigmented colonies on agar plate. Strain YJ-37-HT was able to grow at 20-50 °C (optimum 37 °C), at 0.9-4.8 M NaCl (optimum 2.6 M NaCl), at 0-1.0 M MgCl2 (optimum 0.3 MgCl2) and at pH 6.5-9.0 (optimum pH 7.0). The cells lysed in distilled water, and the minimal NaCl concentration to prevent cell lysis was found to be 5 % (w/v). The 16S rRNA gene and rpoB' gene of strain YJ-37-HT were phylogenetically related to the corresponding genes of Halorussus members (93.2-95.8 % and 90.1-93.9 % similarities, respectively). The major polar lipids of the strain were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and five glycolipids, sulfated galactosyl mannosyl glucosyl diether (S-TGD-1), galactosyl mannosyl glucosyl diether (TGD-1), sulfated mannosyl glucosyl diether (S-DGD-1), mannosyl glucosyl diether (DGD-1) and diglycosyl diether (DGD-2). The DNA G+C content of strain YJ-37-HT was 64.9 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain YJ-37-HT (=CGMCC 1.12571T = JCM 30032T) represents a new species of Halorussus, for which the name Halorussus salinus sp. nov. is proposed.
Collapse
Affiliation(s)
- Jia-Qi Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Wen-Mei Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Yang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Yao Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Zhen-Zhen Lü
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|