1
|
Márton D, Farkas M, Bedics A, Tóth E, Táncsics A, Bóka K, Maróti G, Baka E, Kriszt B, Cserháti M. Paenibacillus zeirhizosphaerae sp. nov., isolated from surface of the maize ( Zea mays) roots in a horticulture field, Hungary. Int J Syst Evol Microbiol 2025; 75. [PMID: 39773772 DOI: 10.1099/ijsem.0.006628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
A novel Gram-stain-positive, rod-shaped, endospore-forming bacterium with peritrichous flagella, designated as P96T was isolated from the surface of maize roots. Strain P96T grew optimally at 28 °C, pH 7.0. The strain contained A1γ meso-Dpm-direct in the cell-wall peptidoglycan. The dominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The genome size of strain P96T was 4.8 Mb, and the G+C content was 50.01%. Phylogenomic analyses based on the whole-genome sequences classified the strain into the genus Paenibacillus. The digital DNA-DNA hybridization and average nucleotide identity relatedness analysis resulted in values below the threshold for prokaryotic species delineation, with the highest values observed for Paenibacillus enshidis KCTC 33519T (29.4 and 85.2%, respectively). Genotypic data together with phenotypic properties supported the classification of strain P96T as representative of a novel species of the genus Paenibacillus, for which the name Paenibacillus zeirhizosphaerae sp. nov. is proposed. The type strain is P96T (=LMG 32802T = NCAIM B 02678T).
Collapse
Affiliation(s)
- Dalma Márton
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| | - Milán Farkas
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| | - Erika Tóth
- Department of Microbiology, Etvs Lornd University, Budapest, Hungary
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Etvs Lornd University, Budapest, Hungary
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., Mrahalom, Hungary
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Erzsébet Baka
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| | - Mátyás Cserháti
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gdll, Hungary
| |
Collapse
|
2
|
Petipas RH, Antoch AA, Eaker AA, Kehlet-Delgado H, Friesen ML. Back to the future: Using herbarium specimens to isolate nodule-associated bacteria. Ecol Evol 2024; 14:e11719. [PMID: 39011130 PMCID: PMC11246978 DOI: 10.1002/ece3.11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Herbarium specimens are increasingly being used as sources of information to understand the ecology and evolution of plants and their associated microbes. Most studies have used specimens as a source of genetic material using culture-independent approaches. We demonstrate that herbarium specimens can also be used to culture nodule-associated bacteria, opening the possibility of using specimens to understand plant-microbe interactions at new spatiotemporal scales. We used historic and contemporary nodules of a common legume, Medicago lupulina, to create a culture collection. We were able to recover historic bacteria in 15 genera from three specimens (collected in 1950, 2004, and 2015). This work is the first of its kind to isolate historic bacteria from herbarium specimens. Future work should include inoculating plants with historic strains to see if they produce nodules and if they affect plant phenotype and fitness. Although we were unable to recover any Ensifer, the main symbiont of Medicago lupulina, we recovered some other potential nodulating species, as well as many putative growth-promoting bacteria.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Amanda A Antoch
- Department of Plant Pathology Washington State University Pullman Washington USA
- Department of Microbiology University of Washington Seattle Washington USA
| | - Ashton A Eaker
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Hanna Kehlet-Delgado
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Maren L Friesen
- Department of Plant Pathology Washington State University Pullman Washington USA
| |
Collapse
|
3
|
Ali R, Chaluvadi SR, Wang X, Hazzouri KM, Sudalaimuthuasari N, Rafi M, Al-Nuaimi M, Sasi S, Antepenko E, Bennetzen JL, Amiri KMA. Microbiome properties in the root nodules of Prosopis cineraria, a leguminous desert tree. Microbiol Spectr 2024; 12:e0361723. [PMID: 38624222 PMCID: PMC11237379 DOI: 10.1128/spectrum.03617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.
Collapse
Affiliation(s)
- Rashid Ali
- Mitrix Bio., Inc., Farmington, Connecticut, USA
| | | | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | | | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Mariam Al-Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Shina Sasi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
| | - Eric Antepenko
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, UAE
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
4
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Kämpfer P, Lipski A, Lamothe L, Clermont D, Criscuolo A, McInroy JA, Glaeser SP. Paenibacillus plantiphilus sp. nov. from the plant environment of Zea mays. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01852-x. [PMID: 37338631 PMCID: PMC10371898 DOI: 10.1007/s10482-023-01852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
A Gram-strain positive, aerobic, endospore-forming bacterial strain (JJ-246T) was isolated from the rhizosphere of Zea mays. The 16S rRNA gene sequence similarity comparisons showed a most closely relationship to Paenibacillus oenotherae DT7-4T (98.4%) and Paenibacillus xanthinolyticus 11N27T (98.0%). The pairwise average nucleotide identity and digital DNA-DNA hybridisation values of the JJ-246T genome assembly against publicly available Paenibacillus type strain genomes were below 82% and 33%, respectively. The draft genome of JJ-246T shared many putative plant-beneficial functions contributing (PBFC) genes, related to plant root colonisation, oxidative stress protection, degradation of aromatic compounds, plant growth-promoting traits, disease resistance, drug and heavy metal resistance, and nutrient acquisition. The quinone system of strain JJ-246T, the polar lipid profile and the major fatty acids were congruent with those reported for members of the genus Paenibacillus. JJ-246T was shown to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus plantiphilus sp. nov. is proposed, with JJ-246T (= LMG 32093T = CCM 9089T = CIP 111893T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lucie Lamothe
- CNRS, IFB-Core, UMS 3601, Institut Français de Bioinformatique, Evry, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université de Paris, 75015, Paris, France
| | - Dominique Clermont
- Institut Pasteur, CIP - Collection of Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université de Paris, 75015, Paris, France
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
6
|
Kämpfer P, Lipski A, Lamothe L, Clermont D, Criscuolo A, McInroy JA, Glaeser SP. Paenibacillus allorhizoplanae sp. nov. from the rhizoplane of a Zea mays root. Arch Microbiol 2022; 204:630. [PMID: 36115912 PMCID: PMC9482572 DOI: 10.1007/s00203-022-03225-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022]
Abstract
A Gram-positive staining, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays was studied for its detailed taxonomic allocation. Based on the 16S rRNA gene sequence similarity comparisons, strain JJ-42 T was shown to be a member of the genus Paenibacillus, most closely related to the type strain of Paenibacillus pectinilyticus (98.8%). The 16S rRNA gene sequence similarity to all other Paenibacillus species was below 98.5%. The pairwise average nucleotide identity (ANI) and digital DNA−DNA hybridization (dDDH) values of the JJ-42 T genome assembly against publicly available Paenibacillus type strain genomes were below 92% and 47%, respectively. The quinone system of strain JJ-42 T consisted exclusively of menaquinone MK-7. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three aminophospholipids (APL), and one unidentified lipid. The major fatty acids were iso- and anteiso-branched with the major compound anteiso C15:0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-42 T from the most closely related species. Thus, JJ-42 T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus allorhizoplanae sp. nov. is proposed, with JJ-42 T (= LMG 32089 T = CCM 9085 T = DSM 111786 T = CIP 111891 T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lucie Lamothe
- CNRS, Institut Français de Bioinformatique, IFB-Core, UMS 3601, Evry, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Dominique Clermont
- Institut Pasteur, Université de Paris, CIP-Collection of Institut Pasteur, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Stefanie P Glaeser
- Institut für angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
7
|
Jing L, Jia-min A, Xiao-dong L, Ying-ying J, Chao-chao Z, Rui-hua Z, Zhen-shan D. Environmental filtering drives the establishment of the distinctive rhizosphere, bulk, and root nodule bacterial communities of Sophora davidii in hilly and gully regions of the Loess Plateau of China. Front Microbiol 2022; 13:945127. [PMID: 35935225 PMCID: PMC9355530 DOI: 10.3389/fmicb.2022.945127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to the rhizobia, other non-rhizobial endophytes (NREs) have been simultaneously isolated from the root nodules. The existence of NREs in leguminous root nodules is a universal phenomenon, and they have the potential to enhance legume survival, especially under conditions of environmental stress. However, the diversity and biogeographic patterns of microbial communities inhabiting root nodules are not well studied or understood. Here, we explored and characterized the diversity of NRE bacteria by using 16S rRNA gene high-throughput amplicon sequencing. Additionally, we compared the biogeography and co-occurrence patterns in review of the bacterial microbiota inhabiting the rhizosphere, the bulk soil and the root nodule bacterial communities associated with Sophora davidii, a native N-fixing wild leguminous shrub in hilly and gully regions of the Loess Plateau of China. The results showed the presence of a large diversity of bacteria belonging to 81 phyla, 154 classes, 333 orders, 463 families, and 732 genera inside the nodules. Proteobacteria were dominant in the nodule and rhizosphere soil samples, and Actinomycetes were dominant in the bulk soil samples. Mesorhizobium was the dominant genus in the nodules, accounting for between 60.15 and 83.74% of the bacteria. The microbial community composition of the NRE in the root nodules differed from that in the rhizosphere soil and the bulk soil of S. davidii. Moreover, we found that the biogeographic patterns and assembly process of the rhizobia and non-rhizobia communities differed in the root nodule, the rhizosphere soil and the bulk soil. Furthermore, the correlation analysis between the soil’s physical and chemical properties and the bacteria showed that available phosphorus was the predominant factor affecting the bacterial diversity within the rhizosphere soil. Finally, our results revealed that the microbial network diagram of co-occurrence patterns showed more complexes in the soil than in the root nodules. This indicates that only specific microorganisms could colonize and thrive in the rhizosphere through the selection and filtering effects of roots. In conclusion, there are significant differences in bacterial community composition in the nodules, rhizosphere and bulk soil in the hilly and gully region of the Loess Plateau, which is the result of environmental filtration. Our study improves the understanding of the biogeographic patterns and diversity of bacterial microbiota inhabiting root nodules and can help quantify and define the root nodule assemblage process of S. davidii.
Collapse
|
8
|
Kämpfer P, Lipski A, McInroy JA, Clermont D, Criscuolo A, Glaeser SP. Bacillus rhizoplanae sp. nov. from maize roots. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic and endospore-forming bacterial strain, isolated from the root surface of maize (Zea mays) was taxonomically studied. It could be clearly shown that, based on 16S rRNA gene sequence similarity comparisons, strain JJ-63T is a member of the genus
Bacillus
, most closely related to the type strain of
Bacillus pseudomycoides
(98.61%), followed by
Bacillus cereus
(98.47 %). Detailed phylogenetic analysis based on the 16S rRNA gene and the 87 proteins conserved within the phylum
Firmicutes
placed the strain into the Cereus clade. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values against the type strain of
B. pseudomycoides
were 80.97, 81.45 and 26.30 %, respectively. The quinone system of strain JJ-63T consisted exclusively of menaquinone MK-7. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified glycolipid. Major fatty acids were iso- and anteiso-branched with the major compounds iso-C15 : 0 and iso-C17 : 0. Also, the characteristic compounds C13 : 0 iso and C16 : 1
cis10 were found. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-63T from the most closely related species. For this reason, JJ-63T represents a novel species of the genus
Bacillus
, for which the name Bacillus rhizoplanae sp. nov. is proposed, with JJ-63T (=LMG 32091T=CCM 9090T=DSM 111827T= CIP 111899T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CIP – Collection of Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
9
|
Etesami H. Root nodules of legumes: A suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Kämpfer P, Busse HJ, McInroy JA, Clermont D, Criscuolo A, Glaeser SP. Paenibacillus allorhizosphaerae sp. nov., from soil of the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2021; 71. [PMID: 34672916 DOI: 10.1099/ijsem.0.005051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus, most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA-DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK-6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, Wien A-1210, Austria
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | | | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
11
|
Ali MA, Lou Y, Hafeez R, Li X, Hossain A, Xie T, Lin L, Li B, Yin Y, Yan J, An Q. Functional Analysis and Genome Mining Reveal High Potential of Biocontrol and Plant Growth Promotion in Nodule-Inhabiting Bacteria Within Paenibacillus polymyxa Complex. Front Microbiol 2021; 11:618601. [PMID: 33537018 PMCID: PMC7848036 DOI: 10.3389/fmicb.2020.618601] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteria belonging to the genus Paenibacillus were frequently isolated from legume nodules. The nodule-inhabiting Paenibacillus as a resource of biocontrol and plant growth-promoting endophytes has rarely been explored. This study explored the nodule-inhabiting Paenibacillus' antifungal activities and biocontrol potentials against broad-spectrum important phytopathogenic fungi. We collected strains which were isolated from nodules of Robinia pseudoacacia, Dendrolobium triangulare, Ormosia semicastrata, Cicer arietinum, Acacia crassicarpa, or Acacia implexa and belong to P. peoriae, P. kribbensis, P. endophyticus, P. enshidis, P. puldeungensis, P. taichungensis, or closely related to P. kribbensis, or P. anseongense. These nodule-inhabiting Paenibacillus showed diverse antagonistic activities against five phytopathogenic fungi (Fusarium graminearum, Magnaporthe oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Botrytis cinerea). Six strains within the P. polymyxa complex showed broad-spectrum and potent activities against all the five pathogens, and produced multiple hydrolytic enzymes, siderophores, and lipopeptide fusaricidins. Fusaricidins are likely the key antimicrobials responsible for the broad-spectrum antifungal activities. The nodule-inhabiting strains within the P. polymyxa complex were able to epiphytically and endophytically colonize the non-host wheat plants, produce indole acetic acids (IAA), and dissolve calcium phosphate and calcium phytate. P. peoriae strains RP20, RP51, and RP62 could fix N2. P. peoriae RP51 and Paenibacillus sp. RP31, which showed potent plant colonization and plant growth-promotion competence, effectively control fungal infection in planta. Genome mining revealed that all strains (n = 76) within the P. polymyxa complex contain ipdC gene encoding indole-3-pyruvate decarboxylase for biosynthesis of IAA, 96% (n = 73) contain the fus cluster for biosynthesis of fusaricidins, and 43% (n = 33) contain the nif cluster for nitrogen fixation. Together, our study highlights that endophytic strains within the P. polymyxa complex have a high probability to be effective biocontrol agents and biofertilizers and we propose an effective approach to screen strains within the P. polymyxa complex.
Collapse
Affiliation(s)
- Md. Arshad Ali
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuqing Li
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Afsana Hossain
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ting Xie
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Bin Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianli Yan
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qianli An
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Province Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Hansen BL, Pessotti RDC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF. Cooperation, Competition, and Specialized Metabolism in a Simplified Root Nodule Microbiome. mBio 2020; 11:e01917-20. [PMID: 32843548 PMCID: PMC7448283 DOI: 10.1128/mbio.01917-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Microbiomes associated with various plant structures often contain members with the potential to make specialized metabolites, e.g., molecules with antibacterial, antifungal, or siderophore activities. However, when and where microbes associated with plants produce specialized metabolites, and the potential role of these molecules in mediating intramicrobiome interactions, is not well understood. Root nodules of legume plants are organs devoted to hosting symbiotic bacteria that fix atmospheric nitrogen and have recently been shown to harbor a relatively simple accessory microbiome containing members with the ability to produce specialized metabolites in vitro On the basis of these observations, we sought to develop a model nodule microbiome system for evaluating specialized microbial metabolism in planta Starting with an inoculum derived from field-grown Medicago sativa nodules, serial passaging through gnotobiotic nodules yielded a simplified accessory community composed of four members: Brevibacillus brevis, Paenibacillus sp., Pantoea agglomerans, and Pseudomonas sp. Some members of this community exhibited clear cooperation in planta, while others were antagonistic and capable of disrupting cooperation between other partners. Using matrix-assisted laser desorption ionization-imaging mass spectrometry, we found that metabolites associated with individual taxa had unique distributions, indicating that some members of the nodule community were spatially segregated. Finally, we identified two families of molecules produced by B. brevisin planta as the antibacterial tyrocidines and a novel set of gramicidin-type molecules, which we term the britacidins. Collectively, these results indicate that in addition to nitrogen fixation, legume root nodules are likely also sites of active antimicrobial production.
Collapse
Affiliation(s)
- Bridget L Hansen
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Alyssa Collins
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Laila El-Hifnawi
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Mira D Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
13
|
Chen Z, Ouyang W, Chen Y, Tian W, Sun L. Paenibacillus zeisoli sp. nov., isolated from maize-cultivated soil artificially contaminated with cadmium. Int J Syst Evol Microbiol 2019; 69:1149-1154. [DOI: 10.1099/ijsem.0.003288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, motile bacterial strain, designated 3-5-3T, was isolated from maize-cultivated soil artificially contaminated with cadmium, in Nanyang, Henan Province, China. Strain 3-5-3T was oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 3-5-3T was affiliated with the genus
Paenibacillus
and most closely related to
Paenibacillus anaericanus
MH2T (96.5 % similarity). The average nucleotide identity and digital DNA–DNA hybridization values between 3-5-3T and the closely related species ranged 69.4–84.5 % and 18.1–18.4 %. The genomic G+C content was 53.8 mol%. Anteiso-C15 : 0 was the major fatty acid and MK-7 was the only menaquinone. The diamino acid in the cell-wall peptidoglycan contains meso-diaminopimelic acid. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, two unidentified glycolipids, two unidentified aminolipids, one unidentified phospholipid, one unidentified phosphoaminolipid and six unidentified lipids. On the basis of the results obtained in this study, strain 3-5-3T is considered to represent a novel species of the genus
Paenibacillus
, for which the name
Paenibacillus
zei soli sp. nov. is proposed. The type strain is 3-5-3T (=CGMCC 1.13686T=KCTC 33998T).
Collapse
Affiliation(s)
- Zhaojin Chen
- Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Wenkai Ouyang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Yan Chen
- Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, PR China
| | - Leni Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
14
|
Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:129-138. [PMID: 29990724 DOI: 10.1016/j.ecoenv.2018.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
There are fewer reports on plant growth promoting (PGP) bacteria living in nodules as helper to tolerance to abiotic stress such as salinity and drought. The study was conducted to isolate rhizobial and non-rhizobial drought and salinity tolerant bacteria from the surface sterilized root nodules of alfalfa, grown in saline soils, and evaluate the effects of effective isolates on plant growth under salt stress. Based on drought and salinity tolerance of bacterial isolates and having multiple PGP traits, two non-rhizobial endophytic isolates and one rhizobial endophytic isolate were selected for further identification and characterization. Based on partial sequences of 16 S rRNA genes, non-rhizobial isolates and rhizobial isolate were closely related to Klebsiella sp., Kosakonia cowanii, and Sinorhizobium meliloti, respectively. None of the two non-rhizobial strains were able to form nodules on alfalfa roots under greenhouse and in vitro conditions. Co-inoculation of alfalfa plant with Klebsiella sp. A36, K. cowanii A37, and rhizobial strain S. meliloti ARh29 had a positive effect on plant growth indices under salinity stress. In addition, the single inoculation of non-rhizobial strains without rhizobial strain resulted in an increase in alfalfa growth indices compared to the plants non-inoculated and the ones inoculated with S. meliloti ARh29 alone under salinity stress, indicating that nodule non-rhizobial strains have PGP potentials and may be a promising way for improving effectiveness of Rhizobium bio-fertilizers in salt-affected soils.
Collapse
Affiliation(s)
- Fatemeh Noori
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hassan Etesami
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran.
| | - Hamid Najafi Zarini
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farshad Alishahi
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran
| |
Collapse
|
15
|
Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 2017; 67:4956-4961. [DOI: 10.1099/ijsem.0.002357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
16
|
Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW, Glaeser SP. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017; 67:1058-1063. [DOI: 10.1099/ijsem.0.001779] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
17
|
Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y, Wang E, Wei G. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 2017; 26:1641-1651. [PMID: 28139080 DOI: 10.1111/mec.14027] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/10/2016] [Accepted: 12/24/2016] [Indexed: 11/28/2022]
Abstract
The microbiomes of rhizocompartments (nodule endophytes, root endophytes, rhizosphere and root zone) in soya bean and alfalfa were analysed using high-throughput sequencing to investigate the interactions among legume species, microorganisms and soil types. A clear hierarchical filtration of microbiota by plants was observed in the four rhizocompartments - the nodule endosphere, root endosphere, rhizosphere and root zone - as demonstrated by significant variations in the composition of the microbial community in the different compartments. The rhizosphere and root zone microbial communities were largely influenced by soil type, and the nodule and root endophytes were primarily determined by plant species. Diverse microbes inhabited the root nodule endosphere, and the corresponding dominant symbiotic rhizobia belonged to Ensifer for alfalfa and Ensifer-Bradyrhizobium for soya bean. The nonsymbiotic nodule endophytes were mainly Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The variation in root microbial communities was also affected by the plant growth stage. In summary, this study demonstrated that the enrichment process of nodule endophytes follows a hierarchical filtration and that the bacterial communities in nodule endophytes vary according to the plant species.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanbing Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México, D.F., Mexico
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Gao JL, Yuan M, Wang XM, Qiu TL, Lv FY, Yang MM, Sun JG. Paenibacillus radicis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2015; 66:807-811. [PMID: 26612690 DOI: 10.1099/ijsem.0.000795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, aerobic, endospore-forming, and rod-shaped strain designated 694T was isolated from surface-sterilized root tissue of a maize planted in the Fangshan District of Beijing, People's Republic of China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belongs to the genus Paenibacillus. High levels of 16S rRNA gene sequence similarity were found between strain 694T and Paenibacillus xinjiangensis DSM 30034T (98.5 %) and Paenibacillus glycanilyticus (98.1 %), respectively. However, the DNA-DNA hybridization values between strain 694T and its close relatives P. xinjiangensis 16970T and Paenibacillus algorifonticola CGMCC 1.10223T were 30.0 % and 36.7 % respectively. The DNA G+C content of strain 694T was determined to be 46.9 mol%. The predominant respiratory quinone was identified as menaquinone-7 and the polar lipid profile was found to be composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were found to be anteiso-C15 : 0 (42.1 %), iso-C15 : 0 (18.4 %), iso-C16 : 0 (11.2 %) and C16 : 0 (12.1 %). The results of physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 694T from the closely related species in the genus Paenibacillus. Strain 694T is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus radicis sp. nov. is proposed, with the type strain 694T ( = CGMCC 1.15286T = DSM 100762T).
Collapse
Affiliation(s)
- Jun-Lian Gao
- Beijing Agro-Biotechnology Research Center,Beijing Academy of Agriculture and Forestry/Beijing Municipal Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, PR China
| | - Mei Yuan
- Key Laboratory of Microbial Resources,Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PRChina
| | - Xu-Ming Wang
- Beijing Agro-Biotechnology Research Center,Beijing Academy of Agriculture and Forestry/Beijing Municipal Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, PR China
| | - Tian-Lei Qiu
- Beijing Agro-Biotechnology Research Center,Beijing Academy of Agriculture and Forestry/Beijing Municipal Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, PR China
| | - Fan-Yang Lv
- Key Laboratory of Microbial Resources,Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PRChina
| | - Ming-Ming Yang
- Beijing Agro-Biotechnology Research Center,Beijing Academy of Agriculture and Forestry/Beijing Municipal Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, PR China.,College of Agriculture,Yangtze University, Hubei Jingzhou 434025, PRChina
| | - Jian-Guang Sun
- Key Laboratory of Microbial Resources,Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PRChina
| |
Collapse
|