1
|
Zouagui R, Zouagui H, Aurag J, Ibrahimi A, Sbabou L. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere. BMC Genomics 2024; 25:289. [PMID: 38500021 PMCID: PMC10946135 DOI: 10.1186/s12864-024-10088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.
Collapse
Affiliation(s)
- Rahma Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Jamal Aurag
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
2
|
Acuña JJ, Rilling JI, Inostroza NG, Zhang Q, Wick LY, Sessitsch A, Jorquera MA. Variovorax sp. strain P1R9 applied individually or as part of bacterial consortia enhances wheat germination under salt stress conditions. Sci Rep 2024; 14:2070. [PMID: 38267517 PMCID: PMC10808091 DOI: 10.1038/s41598-024-52535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Endophytes isolated from extremophile plants are interesting microbes for improving the stress tolerance of agricultural plants. Here, we isolated and characterized endophytic bacteria showing plant growth-promoting (PGP) traits from plants in two extreme Chilean biomes (Atacama Desert and Chilean Patagonia). Forty-two isolates were characterized as both halotolerant auxin producers (2-51 mg L-1) and 1-aminocyclopropane-1-carboxylate (ACC)-degrading bacteria (15-28 µmol αKB mg protein-1 h-1). The most efficient isolates were tested as single strains, in dual and triple consortia, or in combination with previously reported PGP rhizobacteria (Klebsiella sp. 27IJA and 8LJA) for their impact on the germination of salt-exposed (0.15 M and 0.25 M NaCl) wheat seeds. Interestingly, strain P1R9, identified as Variovorax sp., enhanced wheat germination under salt stress conditions when applied individually or as part of bacterial consortia. Under salt stress, plants inoculated with dual consortia containing the strain Variovorax sp. P1R9 showed higher biomass (41%) and reduced lipid peroxidation (33-56%) than uninoculated plants. Although the underlying mechanisms remain elusive, our data suggest that the application of Variovorax sp. P1R9, alone or as a member of PGP consortia, may improve the salt stress tolerance of wheat plants.
Collapse
Affiliation(s)
- Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
- Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
- Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, 7800003, La Reina, Chile
| | - Joaquin I Rilling
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Nitza G Inostroza
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Qian Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
| | - Lukas Y Wick
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.
- Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
3
|
Alcolea-Medina A, Snell LB, Payne L, Alder CJ, Turnbull JD, Charalampous T, Bryan L, Klein JL, Edgeworth JD, Batra R, Goodman AL. Variovorax durovernensis sp. nov., a novel species isolated from an infected prosthetic aortic graft in a human. Int J Syst Evol Microbiol 2023; 73. [PMID: 38050797 DOI: 10.1099/ijsem.0.006184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
A novel bacterial strain, GSTT-20T was isolated from an infected, prosthetic endovascular graft explanted from a shepherd in London, United Kingdom. This strain was an aerobic, catalase-positive, oxidase-negative, Gram-stain-negative, motile, curved rod. It grew on blood agar, chocolate agar and MacConkey agar incubated at 37 °C in an aerobic environment after 48 h, appearing as yellow, mucoid colonies. Analysis of the complete 16S rRNA gene sequence showed closest similarity to Variovorax paradoxus with 99.6 % identity and Variovorax boronicumulans with 99.5 % identity. Phylogenetic analysis of the 16S rRNA gene sequence and phylogenomic analysis of single nucleotide polymorphisms within 1530 core genes showed GSTT-20T forms a distinct lineage in the genus Variovorax of the family Comamonadaceae. In silico DNA-DNA hybridization assays against GSTT-20T were estimated at 32.1 % for V. boronicumulans and 31.9 % for V. paradoxus. Genome similarity based on average nucleotide identity was 87.50 % when comparing GSTT-20T to V. paradoxus. Based on these results, the strain represented a novel species for which the name Variovorax durovernensis sp. nov. was proposed. The type strain is GSTT-20T (NCTC 14621T=CECT 30390T).
Collapse
Affiliation(s)
- Adela Alcolea-Medina
- Department of Infectious Diseases, King's College London, London, UK
- Infection Sciences, Synnovis, London, UK
| | - Luke B Snell
- Department of Infectious Diseases, King's College London, London, UK
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Lara Payne
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Christopher J Alder
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Jake D Turnbull
- The National Collection of Type Cultures, United Kingdom Health Security Agency, Colindale, London, UK
| | - Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Lisa Bryan
- Infection Sciences, Synnovis, London, UK
| | - John L Klein
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Jonathan D Edgeworth
- Department of Infectious Diseases, King's College London, London, UK
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Anna L Goodman
- Department of Infectious Diseases, King's College London, London, UK
- Centre for Clinical Infection and Diagnostics Research, Guy's & St. Thomas' NHS Foundation Trust, London, UK
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| |
Collapse
|
4
|
Neumann GB, Korkuć P, Reißmann M, Wolf MJ, May K, König S, Brockmann GA. Unmapped short reads from whole-genome sequencing indicate potential infectious pathogens in german black Pied cattle. Vet Res 2023; 54:95. [PMID: 37853447 PMCID: PMC10585868 DOI: 10.1186/s13567-023-01227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
When resequencing animal genomes, some short reads cannot be mapped to the reference genome and are usually discarded. In this study, unmapped reads from 302 German Black Pied cattle were analyzed to identify potential pathogenic DNA. These unmapped reads were assembled and blasted against NCBI's database to identify bacterial and viral sequences. The results provided evidence for the presence of pathogens. We found sequences of Bovine parvovirus 3 and Mycoplasma species. These findings emphasize the information content of unmapped reads for gaining insight into bacterial and viral infections, which is important for veterinarians and epidemiologists.
Collapse
Affiliation(s)
- Guilherme B Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Monika Reißmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuel J Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Characteristics and Comparative Genomic Analysis of a Novel Virus, VarioGold, the First Bacteriophage of Variovorax. Int J Mol Sci 2022; 23:ijms232113539. [DOI: 10.3390/ijms232113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Variovorax represents a widespread and ecologically significant genus of soil bacteria. Despite the ecological importance of these bacteria, our knowledge about the viruses infecting Variovorax spp. is quite poor. This study describes the isolation and characterization of the mitomycin-induced phage, named VarioGold. To the best of our knowledge, VarioGold represents the first characterized virus for this genus. Comparative genomic analyses suggested that VarioGold is distinct from currently known bacteriophages at both the nucleotide and protein levels; thus, it could be considered a new virus genus. In addition, another 37 prophages were distinguished in silico within the complete genomic sequences of Variovorax spp. that are available in public databases. The similarity networking analysis highlighted their general high diversity, which, despite clustering with previously described phages, shows their unique genetic load. Therefore, the novelty of Variovorax phages warrants the great enrichment of databases, which could, in turn, improve bioinformatic strategies for finding (pro)phages.
Collapse
|
6
|
Woo CY, Kim J. Variovorax terrae sp. nov. Isolated from Soil with Potential Antioxidant Activity. J Microbiol Biotechnol 2022; 32:855-861. [PMID: 35791077 PMCID: PMC9628916 DOI: 10.4014/jmb.2205.05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
A white-pigmented, non-motile, gram-negative, and rod-shaped bacterium, designated CYS-02T, was isolated from soil sampled at Suwon, Gyeonggi-do, Republic of Korea. Cells were strictly aerobic, grew optimally at 20-28ºC and hydrolyzed Tween 40. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain CYS-02T formed a lineage within the family Comamonadaceae and clustered as members of the genus Variovorax. The closest members were Variovorax guangxiensis DSM 27352T (98.6% sequence similarity), Variovorax paradoxus NBRC 15149T (98.5%), and Variovorax gossypii JM-310T (98.3%). The principal respiratory quinone was Q-8 and the major polar lipids contain phosphatidylethanolamine (PE), phosphatidylethanolamine (PG), and diphosphatidylglycerol (DPG). The predominant cellular fatty acids were C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The DNA GC content was 67.7 mol%. The ANI and dDDH values between strain CYS-02T and the closest members in the genus Variovorax were ≤ 79.0 and 22.4%, respectively, and the AAI and POCP values between CYS-02T and the other related species in the family Comamonadaceae were > 70% and > 50%, respectively. The genome of strain CYS-02T showed a putative terpene biosynthetic cluster responsible for antioxidant activity which was supported by DPPH radical scavenging activity test. Based on genomic, phenotypic and chemotaxonomic analyses, strain CYS-02T was classified into a novel species in the genus Variovorax, for which the name Variovorax terrae sp. nov., has been proposed. The type strain is CYS-02T (= KACC 22656T = NBRC 115645 [corrected] T).
Collapse
Affiliation(s)
- Chae Yung Woo
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea,Corresponding author Phone: +82-31-249-9648 Fax: +82-31-249-9604 E-mail:
| |
Collapse
|
7
|
Flores-Duarte NJ, Pérez-Pérez J, Navarro-Torre S, Mateos-Naranjo E, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID. Improved Medicago sativa Nodulation under Stress Assisted by Variovorax sp. Endophytes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081091. [PMID: 35448819 PMCID: PMC9026315 DOI: 10.3390/plants11081091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/12/2023]
Abstract
Legumes are the recommended crops to fight against soil degradation and loss of fertility because of their known positive impacts on soils. Our interest is focused on the identification of plant-growth-promoting endophytes inhabiting nodules able to enhance legume growth in poor and/or degraded soils. The ability of Variovorax paradoxus S110T and Variovorax gossypii JM-310T to promote alfalfa growth in nutrient-poor and metal-contaminated estuarine soils was studied. Both strains behaved as nodule endophytes and improved in vitro seed germination and plant growth, as well as nodulation in co-inoculation with Ensifer medicae MA11. Variovorax ameliorated the physiological status of the plant, increased nodulation, chlorophyll and nitrogen content, and the response to stress and metal accumulation in the roots of alfalfa growing in degraded soils with moderate to high levels of contamination. The presence of plant-growth-promoting traits in Variovorax, particularly ACC deaminase activity, could be under the observed in planta effects. Although the couple V. gossypii-MA11 reported a great benefit to plant growth and nodulation, the best result was observed in plants inoculated with the combination of the three bacteria. These results suggest that Variovorax strains could be used as biofertilizers to improve the adaptation of legumes to degraded soils in soil-recovery programs.
Collapse
Affiliation(s)
- Noris J. Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (N.J.F.-D.); (J.P.-P.); (E.P.)
| | - Julia Pérez-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (N.J.F.-D.); (J.P.-P.); (E.P.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (N.J.F.-D.); (J.P.-P.); (E.P.)
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (E.M.-N.); (S.R.-G.)
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (E.M.-N.); (S.R.-G.)
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (N.J.F.-D.); (J.P.-P.); (E.P.)
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (N.J.F.-D.); (J.P.-P.); (E.P.)
| |
Collapse
|
8
|
Variovorax beijingensis sp. nov., a novel plant-associated bacterial species with plant growth-promoting potential isolated from different geographic regions of Beijing, China. Syst Appl Microbiol 2020; 43:126135. [PMID: 32971439 DOI: 10.1016/j.syapm.2020.126135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
Two plant-associated bacterial strains were isolated from Beijing, China. The two strains possessed almost identical 16S rRNA gene sequences. However, REP-PCR fingerprint patterns discriminated that they were not from one clonal origin. The average nucleotide identity (ANI) value and the digital DNA-DNA hybridization (dDDH) value between the two strains were 99.4% and 94.7%, respectively, suggesting that they belonged to the same species. The 16S rRNA gene phylogeny analysis indicated that the two strains belonged to the genus Variovorax and were closely related to V. paradoxus NBRC 15149T and V. boronicumulans BAM-48T. Their phylogenetic relationship were confirmed in both phylogenetic trees constructed with house-keeping gene sequences and concatenated core genes of the genome. The ANI and dDDH comparisons among 502T and the most related type strains showed values below the accepted threshold for species discrimination. The genome sizes of strains 502T and T529 were 6.76 and 6.69 Mbp, respectively. The strain 502T had 6,227 predicted genes with DNA G+C content of 67.4 %. The respiratory quinone was ubiquinone-8 and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphospatidylglycerol. The major fatty acids of strain 502T were C10: 03-OH (26.2%), C16:0 (12.9%), C17:0 cyclo (14.5%) and summed feature 3 (21.4%). Furthermore, both strains showed the potential of plant growth promotion. Based on these results, the two isolates could be considered to represent a novel species of the genus Variovorax, for which the name Variovorax beijingensis sp. nov., is proposed, with 502T (= DSM 106862T = CGMCC 1.16560T) as the type strain.
Collapse
|
9
|
Nguyen TM, Trinh NH, Kim J. Proposal of three novel species of soil bacteria, Variovorax ureilyticus, Variovorax rhizosphaerae, and Variovorax robiniae, in the family Comamonadaceae. J Microbiol 2018; 56:485-492. [DOI: 10.1007/s12275-018-8025-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 05/04/2018] [Indexed: 10/14/2022]
|