1
|
Manetsberger J, Caballero Gómez N, Soria-Rodríguez C, Benomar N, Abriouel H. Simply Versatile: The Use of Peribacillus simplex in Sustainable Agriculture. Microorganisms 2023; 11:2540. [PMID: 37894197 PMCID: PMC10608964 DOI: 10.3390/microorganisms11102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Peribacillus simplex is a Gram-positive, spore-forming bacterium derived from a vast range of different origins. Notably, it is part of the plant-growth-promoting rhizobacterial community of many crops. Although members of the Bacillaceae family have been widely used in agriculture, P. simplex has, so far, remained in the shadow of its more famous relatives, e.g., Bacillus subtilis or Bacillus thuringiensis. Recent studies have, however, started to uncover the bacterium's highly promising and versatile properties, in particular in agricultural and environmental applications. Hence, here, we review the plant-growth-promoting features of P. simplex, as well as its biocontrol activity against a variety of detrimental plant pests in different crops. We further highlight the bacterium's potential as a bioremediation agent for environmental contaminants, such as metals, pesticide residues, or (crude) oil. Finally, we examine the recent developments in the European regulatory landscape to facilitate the use of microorganisms in plant protection products. Undoubtedly, further studies on P. simplex will reveal additional benefits for agricultural and environmentally friendly applications.
Collapse
Affiliation(s)
- Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Natacha Caballero Gómez
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Carlos Soria-Rodríguez
- Area of Public International Law and International Relations, Department of Public and European Common Law, University of Jaén, 23071 Jaén, Spain
| | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| |
Collapse
|
2
|
Screening of Spore-Forming Bacteria with Probiotic Potential in Pristine Algerian Caves. Microbiol Spectr 2022; 10:e0024822. [PMID: 36214685 PMCID: PMC9604054 DOI: 10.1128/spectrum.00248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interest and exploration of biodiversity in subsurface ecosystems have increased significantly during the last 2 decades. The aim of this study was to investigate the in vitro probiotic properties of spore-forming bacteria isolated from deep caves. Two hundred fifty spore-forming microbes were enriched from sediment samples from 10 different pristine caves in Algeria at different depths. Isolates showing nonpathogenic profiles were screened for their potential to produce digestive enzymes (gliadinase and beta-galactosidase) in solid and liquid media, respectively. Different probiotic potentialities were studied, including (i) growth at 37°C, (ii) survival in simulated gastric juice, (iii) survival in simulated intestinal fluid, and (iv) antibiotic sensitivity and cell surface properties. The results showed that out of 250 isolates, 13 isolates demonstrated nonpathogenic character, probiotic potentialities, and ability to hydrolyze gliadin and lactose in solution. These findings suggest that a selection of cave microbes might serve as a source of interesting candidates for probiotics. IMPORTANCE Previous microbial studies of subsurface ecosystems like caves focused mainly on the natural biodiversity in these systems. So far, only a few studies focused on the biotechnological potential of microbes in these systems, focusing in particular on their antibacterial potential, antibiotic production, and, to some extent, enzymatic potential. This study explores whether subsurface ecosystems can serve as an alternative source for microbes relevant to probiotics. The research focused on the ability of cave microbes to degrade two substrates (lactose and gliadin) that cause common digestive disorders. Since these enzymes may prove to be useful in food processing and in reducing the effect of lactose and gliadin digestion within intolerant patients, isolation of microbes such as in this study may expand the possibilities of developing alternative strategies to deal with these intolerances.
Collapse
|
3
|
Rodríguez M, Reina JC, Sampedro I, Llamas I, Martínez-Checa F. Peribacillus castrilensis sp. nov.: A Plant-Growth-Promoting and Biocontrol Species Isolated From a River Otter in Castril, Granada, Southern Spain. FRONTIERS IN PLANT SCIENCE 2022; 13:896728. [PMID: 35812926 PMCID: PMC9262404 DOI: 10.3389/fpls.2022.896728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
A strictly aerobic, chemoheterotrophic, endospore-forming, Gram-positive, rod-shaped bacterial strain N3T was isolated from the feces of a river otter in Castril (Granada, southern Spain). It is halotolerant, motile, and catalase-, oxidase-, ACC deaminase-, and C4- and C8-lipase-positive. It promotes tomato plant growth and can reduce virulence in Erwinia amylovora CECT 222T and Dickeya solani LMG 25993T through interference in their quorum-sensing systems, although other antagonistic mechanisms could also occur. A phylogenetic analysis of the 16S rRNA gene sequence as well as the phenotypic and phylogenomic analyses indicated that the strain N3T is a novel species of the genus Peribacillus, with the highest 16S rRNA sequence similar to that of Bacillus frigoritolerans DSM 8801T (99.93%) and Peribacillus simplex DSM 1321T (99.80%). Genomic digital DNA-DNA hybridization (dDDH) between the strain N3T and Bacillus frigoritolerans DSM 8801T and Peribacillus simplex was 12.8 and 69.1%, respectively, and the average nucleotide identity (ANIb) of strain N3T and Bacillus frigoritolerans DSM 8801T and Peribacillus simplex was 67.84 and 93.21%, respectively. The genomic G + C content was 40.3 mol%. Its main cellular fatty acids were anteiso-C15:0 and iso-C15:0. Using 16S rRNA phylogenetic and in silico phylogenomic analyses, together with the chemotaxonomic and phenotypic data, we demonstrated that the type strain N3T (=CECT 30509T = LMG 32505T) is a novel species of the genus Peribacillus and the name Peribacillus castrilensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Miguel Rodríguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Biomedical Research Centre (CIBM), Institute of Biotechnology, University of Granada, Granada, Spain
| | - Fernando Martínez-Checa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Biomedical Research Centre (CIBM), Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Gao JL, Sun P, Sun YC, Xue J, Wang G, Wang LW, Du Y, Zhang X, Sun JG. Caulobacter endophyticus sp. nov., an endophytic bacterium harboring three lasso peptide biosynthetic gene clusters and producing indoleacetic acid isolated from maize root. Antonie van Leeuwenhoek 2021; 114:1213-1224. [PMID: 34002321 DOI: 10.1007/s10482-021-01593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
A novel Gram-stain-negative, aerobic and rod-shaped bacterium with a single polar flagellum or a stalk at the end of the cell, was isolated from maize roots in the Fangshan District of Beijing, People's Republic of China. The new strain designated 774T produced indole acetic acid (IAA). The 16S rRNA gene sequence analysis indicated that strain 774T belongs to the genus Caulobacter and is closely related to Caulobacter flavus RHGG3T, Caulobacter zeae 410Tand Caulobacter radices 695T, all with sequence similarities of 99.9%. The genome size of strain774T was 5.4 Mb, comprising 5042 predicted genes with a DNA G+C content of 68.7%.Three striking lasso peptide biosynthetic gene clusters and two IAA synthesis genes belonging to the TPM pathway were also found in the genome of strain 774T. The average nucleotide identity values and digital DNA-DNA hybridization values of the strain774T with its closely phylogenetic neighbours were less than 91.5% and 45.0%, respectively, indicating a new Caulobacter species. The major fatty acids of strain774T were identified as C16: 0 (27.7%), summed feature 3 (C16: 1ω6c and/or C16: 1ω7c) (12.6%) and summed feature 8 (C18: 1ω7c and/or C18: 1ω6c) (42.9%).The major polar lipids consisted of phosphatidyl-glycerol and glycolipids. The predominant ubiquinone was identified as Quinone 10. Based on the polyphasic characterization, strain 774T represents a novel species of the genus Caulobacter, for which the name Caulobacter endophyticus sp. nov. is proposed with 774T (= CGMCC 1.16558T = DSM 106777T) as the type strain.
Collapse
Affiliation(s)
- Jun-Lian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Pengbo Sun
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Yu-Chen Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China.,College of Food Science and Engineering, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Li-Wei Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, People's Republic of China.
| | - Jian-Guang Sun
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
5
|
Jiang L, Jung WY, Li Z, Lee MK, Park SH, Kang SW, Lee JS, Jung H, Hur TY, Kim HB, Kim JK, Lee JH, Lee JH, Lee J. Peribacillus faecalis sp. nov., a moderately halophilic bacterium isolated from the faeces of a cow. Int J Syst Evol Microbiol 2021; 71. [PMID: 33650947 DOI: 10.1099/ijsem.0.004721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, facultatively anaerobic, endospore-forming, rod-shaped strain, AGMB 02131T, which grew at 20-40 °C (optimum 30 °C), pH 3.0-11.0 (optimum pH 4.0) and in the presence of 0-18 % (w/v) NaCl (optimum 10 %), was isolated from a cow faecal sample and identified as a novel strain using a polyphasic taxonomic approach. The phylogenetic analysis based on 16S rRNA gene sequences along with the whole genome (92 core gene sets) revealed that AGMB 02131T formed a group within the genus Peribacillus, and showed the highest sequence similarity with Peribacillus endoradicis DSM 28131T (96.9 %), following by Peribacillus butanolivorans DSM 18926T (96.6 %). The genome of AGMB 02131T comprised 70 contigs, the chromosome length was 4 038 965 bp and it had a 38.5 % DNA G+C content. Digital DNA-DNA hybridization revealed that AGMB 02131T displayed 21.4 % genomic DNA relatedness with the most closely related strain, P. butanolivorans DSM 18926T. AGMB 02131T contains all of the conserved signature indels that are specific for members of the genus Peribacillus. The major cellular fatty acids (>10 %) of AGMB 02131T were C18 : 1ω9c, C18:0 and C16 : 0. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. On the basis of the phenotypic, phylogenetic, genomic and chemotaxonomic features, AGMB 02131T represents a novel species of the genus Peribacillus, for which the name Peribacillus faecalis sp. nov. is proposed. The type strain is AGMB 02131T (=KCTC 43221T=CCTCC AB 2020077T).
Collapse
Affiliation(s)
- Lingmin Jiang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Won Yong Jung
- Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Zhun Li
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Mi-Kyung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Hyunjung Jung
- Swine Science Division, National Institute of Animal Science, Cheonan 31000, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Disease and Health, National Institute of Animal Science, Wanju-Gun 55365, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 3116, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
6
|
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. [PMID: 31617837 DOI: 10.1099/ijsem.0.003775] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus, harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known Bacillus species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among Bacillus species, 352 available genome sequences from the family Bacillaceae were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core Bacillaceae proteins, 87 proteins conserved within the phylum Firmicutes, GyrA-GyrB-RpoB-RpoC proteins, and UvrD-PolA proteins. All trees exhibited nearly identical branching of Bacillus species and consistently displayed six novel monophyletic clades encompassing 5-23 Bacillus species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other Bacillaceae species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of Bacillus species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct 'Bacillus' clades, we propose the transfer of species from these clades into six novel Bacillaceae genera viz. Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus Bacillus.
Collapse
Affiliation(s)
- Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
7
|
Abstract
A Gram-stain-positive, rod-shaped, motile bacterial strain, designated 3-2-2T, was isolated from field topsoil collected from a western suburb of Nanyang city, Henan province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 3-2-2T was a member of the genus
Bacillus
and most closely related to
Bacillus fortis
R-6514T (98.9 % similarity),
Bacillus terrae
RA9T (98.0 %) and
Bacillus fordii
R-7190T (97.7 %). A draft genome sequence determined for strain 3-2-2T revealed a DNA G+C content of 42.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between 3-2-2T and the closely related Bacillus species ranged 79.4–84.2 % and 23.4–24.6 %. The major fatty acids of strain 3-2-2T were iso-C15 : 0, anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. The major isoprenoid quinone was MK-7. meso-Diaminopimelic acid was detected in the peptidoglycan. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid and an unidentified lipid. The results of phylogenetic analyses, in silico genomic comparisons, and chemotaxonomic and phenotypic analyses clearly indicated that strain 3-2-2T represents a novel species within the genus
Bacillus
, for which the name
Bacillus
acidinfaciens sp. nov. is proposed. The type strain is 3-2-2T (=CGMCC 1.13685T=LMG 30839T).
Collapse
|
8
|
Ding MJ, Shang NJ, Xiao ZX, Shao F, Liu L, Huang Y, Zhou LK, Zhou JH, Zhang Y. Bacillus aciditolerans sp. nov., isolated from paddy soil. Int J Syst Evol Microbiol 2019; 69:1155-1161. [PMID: 30816840 DOI: 10.1099/ijsem.0.003285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, motile, rod-shaped bacterial strain, YN-1T, was isolated from a rice field in the town of Jietou, Yunnan Province, PR China. Colonies were circular, 1-2 mm in diameter, creamy white, with slightly irregular margins. The isolate grew optimally at 37 °C, pH 7.0 and with 1.0 % (w/v) NaCl. On the basis of the results of 16S rRNA gene sequence similarity comparisons, YN-1T clustered together with other species of the genus Bacillus and showed highest similarities with Bacillus onubensis 0911MAR22V3T (98.0 %), Bacillus humi LMG22167T (97.5 %), 'Bacillus timonensis' 10403023 (97.4 %) and 'Bacillussinesaloumensis' P3516 (97.1 %). However, the DNA-DNA hybridization values between YN-1T and closely related strains of species of the genus Bacillus were well below 47 %, indicating that they represent different taxa. The average nucleotide identity and the Genome-to-Genome Distance Calculator also revealed low relatedness (below 95 and 70 %, respectively) between YN-1T and type strains of closely related species of the genus Bacillus. The DNA G+C content of the strain was 40 mol%. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, three unidentified aminophospholipids and two other unidentified lipids. Physiological and biochemical test results were also different from those of the most closely related species. On the basis of the phenotypic, genetic and chemotaxonomic data, strain YN-1T is considered to represent a novel species of the genus Bacillus, for which the name Bacillusaciditolerans sp. nov. is proposed, with strain YN-1T (=CCTCC AB 2017280T=JCM 32973T) as the type strain.
Collapse
Affiliation(s)
- Meng-Jiao Ding
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Nian-Jie Shang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhi-Xin Xiao
- Yunnan Province Tobacco Company Baoshan City Company, Baoshan 678000, PR China
| | - Fei Shao
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Li Liu
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Ying Huang
- Tobacco College of Guizhou University, Guiyang 550025, PR China
| | - Lu-Kuo Zhou
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, PR China.,Hunan Province Tobacco Company Chenzhou City Company, Chenzhou, PR China
| | - Ji-Heng Zhou
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yi Zhang
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
9
|
Sultanpuram VR, Mothe T, Chintalapati S, Chintalapati VR. Bacillus catenulatus sp. nov., an alkalitolerant bacterium isolated from a soda lake. Arch Microbiol 2017; 199:1391-1397. [DOI: 10.1007/s00203-017-1413-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022]
|
10
|
Gong G, Kim S, Lee SM, Woo HM, Park TH, Um Y. Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. J Biotechnol 2017; 254:59-62. [DOI: 10.1016/j.jbiotec.2017.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/26/2022]
|