1
|
Zhang L, Jiang L, Yan W, Tao H, Yao C, An L, Sun Y, Hu T, Sun W, Qian X, Gu J. Exogenous additives reshape the microbiome and promote the reduction of resistome in co-composting of pig manure and mushroom residue. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136544. [PMID: 39566458 DOI: 10.1016/j.jhazmat.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Comprehensive understanding of the microbiome and resistome evolution in compost is crucial for guaranteeing the safety of organic fertilizers. Current studies using different composting systems and sequencing technologies have yielded varying conclusions on the efficacy of exogenous additives (EAs) in reducing antibiotic resistance genes (ARGs) in compost. This study employed metagenomics to investigate the impact of various EAs on microbial communities, ARGs, their coexistence with mobile genetic elements (MGEs), and ARG hosts in co-composting. Our results demonstrated that EAs significantly reshaped the microbial communities and facilitated a notable reduction in total ARG abundance and diversity, primarily by decreasing core ARGs. Cooperative rather than antagonistic relationships among bacteria. The RA changes in total ARGs are mainly caused by a decrease in the prevalence of core ARGs. Furthermore, EAs showed significant efficacy in reducing clinical ARGs, including cfxA, tetX1, cfxA6, vanA, and aac (6')-Ib', with diatomite (5 %) and zeolite (5 %) being the most effective. The effect of EAs on ARGs and microbial community assembly were stochastic processes. Composting stage and EAs jointly reduced the association between ARGs and MGEs in the composting system. The reduction of ARGs attributed to a decreased abundance of potential pathogenic ARG-associated hosts and diminished associations with MGEs. In conclusion, EAs present a straightforward and effective approach for promoting ARGs reduction in compost, offering crucial insights for assessing the environmental risks associated with the release of agricultural ARGs.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanxiang Tao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengcheng Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Choi JK, Poudel S, Yee N, Goff JL. Deeply branching Bacillota species exhibit atypical Gram-negative staining. Microbiol Spectr 2024; 12:e0073224. [PMID: 39162559 PMCID: PMC11448272 DOI: 10.1128/spectrum.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The Gram staining method differentiates bacteria based on their cell envelope structure, with the monoderm and diderm cell envelope types traditionally being synonymous with Gram-positive and Gram-negative stain results, respectively. Monoderms have a single phospholipid membrane surrounded by a thick layer of peptidoglycan, while diderms have a lipopolysaccharide outer membrane exterior to a thin peptidoglycan layer. The Bacillota (formerly Firmicutes) phylum has members with both cell wall types, and recent phylogenetic analyses have shown that monoderm Bacillota evolved from diderm ancestors on multiple occasions. Here, we compiled Gram staining and ultrastructural data for Bacillota species with complete genomes to further investigate the evolution of Gram-positive and Gram-negative cell wall types. The results indicate that many deeply branching lineages at the root of Bacillota phylum stain Gram-negative but do not harbor genes for outer membrane protein or lipopolysaccharide biosynthesis. Phylogenetic reconstructions suggest that several deeply branching Bacillota species have retained a thin peptidoglycan layer in their cell walls, which was inherited from a diderm ancestor. Taxa with this atypical Gram-negative-staining cell wall structure include the thermophilic anaerobe Symbiobacterium thermophilum and members of the Desulfotomaculia, Syntrophamonadia, Desulfitobacteriia, Thermosediminibacteria, and Thermoanaerobacteria. Using Gram-staining results as a proxy for cell wall thickness, our analysis indicates that several independent peptidoglycan thickening events may have occurred in the evolution of the Gram-positive cell envelope. IMPORTANCE In this study, we examined the evolution of bacterial cell envelopes, specifically focusing on Gram-positive and Gram-negative cell wall types in the Bacillota phylum. Our results indicate that certain bacteria can stain Gram-negative despite having a monoderm cell wall structure, thus challenging the conventional interpretation of Gram-staining results. Our observations also question the assumption that Gram-negative staining is always indicative of a diderm structure. These findings have broader implications for understanding how and when cell walls thicken during the evolution of bacterial cell envelopes.
Collapse
Affiliation(s)
- Jessica K. Choi
- Ecology and Evolutionary Biology Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Saroj Poudel
- Department of Marine and Coastal Sciences, Rutgers, New Brunswick, New Jersey, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers, New Brunswick, New Jersey, USA
- Department of Environmental Sciences, Rutgers, New Brunswick, New Jersey, USA
| | - Jennifer L. Goff
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| |
Collapse
|
3
|
Karnachuk OV, Lukina AP, Avakyan MR, Kadnikov VV, Begmatov S, Beletsky AV, Vlasova KG, Novikov AA, Shcherbakova VA, Mardanov AV, Ravin NV. Novel thermophilic genera Geochorda gen. nov. and Carboxydochorda gen. nov. from the deep terrestrial subsurface reveal the ecophysiological diversity in the class Limnochordia. Front Microbiol 2024; 15:1441865. [PMID: 39376703 PMCID: PMC11456536 DOI: 10.3389/fmicb.2024.1441865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
The class Limnochordia harbors a single cultivated member, the mesophilic Limnochorda pilosa, which was isolated from a meromictic lake. Despite numerous molecular signatures reported in various ecosystems, the ecophysiological versatility of this deeply branched lineage of Firmicutes (Bacillota) remains poorly understood. The objective of this study was to use targeted cultivation, based on metagenome-assembled genomes from a deep terrestrial aquifer in Western Siberia, to isolate two new thermophilic members of the class. These isolates, described as Geochorda subterranea gen. nov. sp. nov. and Carboxydochorda subterranea gen. nov. sp. nov. within the Geochordaceae fam. nov., were capable of both anaerobic and aerobic respiration using fumarate and O2, respectively, with simple sugars as electron donors. The cultivated Geochordaceae have demonstrated fermentative growth and degradation of various polymers, including starch, maltose, maltodextrin, xylan, and chitin. The carboxydotrophic C. subterranea sp. nov. exhibited autotrophic growth via the Calvin-Benson-Bassham cycle, using CO, H2, and formate as electron donors and O2 as an electron acceptor, adding metabolic flexibility to the bacterium in the nutrient-depleted "deep biosphere" and supporting the possibility of aerobic metabolism in the deep subsurface. The broad physiological potential deciphered from physiological experiments and comparative genomic data explains the widespread distribution of uncultivated members of the class Limnochordia in various ecosystems, where they can oxidize complex organic substrates through both aerobic and anaerobic respiration, as well as pursue a chemolithotrophic lifestyle through the oxidation of H2 or CO.
Collapse
Affiliation(s)
- Olga V. Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Anastasia P. Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Marat R. Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjahon Begmatov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia G. Vlasova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | | | - Viktoria A. Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Yuanbo Z, Tianyi L, Xuejing S, Xinpeng L, Jianqun W, Wenxia X, Jingshu G. Using formalin fixed paraffin embedded tissue to characterize the microbiota in p16-positive and p16-negative tongue squamous cell carcinoma: a pilot study. BMC Oral Health 2024; 24:283. [PMID: 38419008 PMCID: PMC10900712 DOI: 10.1186/s12903-024-04051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is the most common oral cavity cancer, and p16 immunohistochemistry is an exact and available tool in the prognostic and predictive characterization of squamous cell cancers in the head and neck. Microorganisms have a close relationship with the development of TSCC. However, the association between oral bacteria and p16 status has not been well defined in the case of TSCC. Compared with traditional clinical microbial collection methods, formalin-fixed paraffin-embedded (FFPE) tissue samples have several advantages. METHODS To compare the microbiota compositions between p16-positive and p16-negative patients with TSCC, we performed a small pilot study of microbiological studies of TSCC by paraffin tissue. DNA from FFPE tissue blocks were extracted and microbiomes were profiled by sequencing the 16 S-rRNA-encoding gene (V1-V2/V3-V4/V4 regions). Alterations in the functional potential of the microbiome were predicted using PICRUSt, Tax4Fun, and BugBase. RESULTS A total of 60 patients with TSCC were enrolled in the study, however, some challenges associated with DNA damage in FFPE tissues existed, and only 27 (15 p16-positive and 12 p16-negative) passed DNA quality control. Nevertheless, we have tentatively found some meaningful results. The p16 status is associated with microbiota diversity, which is significantly increased in p16-positive patients compared with p16-negative patients. Desulfobacteria, Limnochordia, Phycisphaerae, Anaerolineae, Saccharimonadia and Kapabacteria had higher abundances among participants with p16-positive. Moreover, functional prediction revealed that the increase of these bacteria may enhance viral carcinogenesis in p16-positive TSCC. CONCLUSIONS Bacterial profiles showed a significant difference between p16-positive TSCC and p16-negative TSCC. These findings may provide insights into the relationship between p16 status and the microbial taxa in TSCC, and these bacteria may provide new clues for developing therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Zhan Yuanbo
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Heilongjiang, Harbin, China
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liu Tianyi
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song Xuejing
- Harbin Institute of Technology Hospital, Harbin, China
| | - Liu Xinpeng
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wang Jianqun
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wenxia
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Geng Jingshu
- Department of pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Heilongjiang, Harbin, China.
| |
Collapse
|
5
|
Dong W, Zhou R, Li X, Yan H, Zheng J, Peng N, Zhao S. Effect of simplified inoculum agent on performance and microbiome during cow manure-composting at industrial-scale. BIORESOURCE TECHNOLOGY 2024; 393:130097. [PMID: 38013035 DOI: 10.1016/j.biortech.2023.130097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
A simplified inoculum agent, only comprising Bacillus subtilis and Aspergillus niger, was utilized for industrial-scale cow-manure composting to investigate its impact on composting performance and microbiome. Inoculants elevated the average and peak temperatures by up to 7 and 10 °C, respectively, during the thermophilic stage, reduced organic matter content, and raised germination index. Inoculation also extended the period of composting above 50 °C from 12 to 26 days. Sequencing unveiled significant shifts in microbial diversity, composition, and function. Aspergillus thrived during the mesophilic phase, potentially initiating composting, whereas Bacillus, Lysinibacillus, and Clostridium were enriched during the thermophilic stage. Metagenomic sequencing revealed an increased abundance of carbohydrate-active enzymes and glycometabolism-related genes responsible for lignocellulose degradation and heat generation after inoculation. These enriched microbes and functional genes contributed to organic matter degradation and temperature maintenance during thermophilic stage, expediting composting. This suggests the effectiveness of this simplified inoculum in industrial-level cow-manure composting.
Collapse
Affiliation(s)
- Weiwei Dong
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; BGI Genomics, Shenzhen 518083, China; Clin Lab, BGI Genomics, Wuhan 430074, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Yan
- Jiangsu Sweeper Biotechnology, Nanjing 211800, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Genome Sequence of " Caldinitratiruptor microaerophilus," a Unique Microaerophilic Bacterium Closely Related to Symbiobacterium. Microbiol Resour Announc 2023; 12:e0114122. [PMID: 36656011 PMCID: PMC9933637 DOI: 10.1128/mra.01141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We present the genome sequence of "Caldinitratiruptor microaerophilus" JCM16183, isolated by Fardeau et al. from a French hot spring. This microaerophilic bacterium represents a novel taxon related to the genus Symbiobacterium. The high (71%) G+C content of its 3.60-Mb circular genome supports the divergence of this bacterium from Clostridia.
Collapse
|
7
|
León Aguilera XE, Manzano A, Pirela D, Bermúdez V. Probiotics and Gut Microbiota in Obesity: Myths and Realities of a New Health Revolution. J Pers Med 2022; 12:jpm12081282. [PMID: 36013231 PMCID: PMC9410237 DOI: 10.3390/jpm12081282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and its comorbidities are humans’ most prevalent cardio-metabolic diseases worldwide. Recent evidence has shown that chronic low-grade inflammation is a common feature in all highly prevalent chronic degenerative diseases. In this sense, the gut microbiota is a complete ecosystem involved in different processes like vitamin synthesis, metabolism regulation, and both appetite and immune system control. Thus, dysbiosis has been recognised as one of the many factors associated with obesity due to a predominance of Firmicutes, a decrease in Bifidobacterium in the gut, and a consequent short-chain fatty acids (SCFA) synthesis reduction leading to a reduction in incretins action and intestinal permeability increase. In this context, bacteria, bacterial endotoxins, and toxic bacterial by-products are translocated to the bloodstream, leading to systemic inflammation. This review focuses on gut microbiota composition and its role in obesity, as well as probiotics and prebiotics benefits in obesity.
Collapse
Affiliation(s)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela
| | - Valmore Bermúdez
- Departamento de Post-Grado, Universidad Católica de Cuenca, Ciudad Cuenca 010109, Ecuador
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
- Correspondence:
| |
Collapse
|
8
|
Christakis CA, Barkay T, Boyd ES. Expanded Diversity and Phylogeny of mer Genes Broadens Mercury Resistance Paradigms and Reveals an Origin for MerA Among Thermophilic Archaea. Front Microbiol 2021; 12:682605. [PMID: 34248899 PMCID: PMC8261052 DOI: 10.3389/fmicb.2021.682605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a highly toxic element due to its high affinity for protein sulfhydryl groups, which upon binding, can destabilize protein structure and decrease enzyme activity. Prokaryotes have evolved enzymatic mechanisms to detoxify inorganic Hg and organic Hg (e.g., MeHg) through the activities of mercuric reductase (MerA) and organomercury lyase (MerB), respectively. Here, the taxonomic distribution and evolution of MerAB was examined in 84,032 archaeal and bacterial genomes, metagenome assembled genomes, and single-cell genomes. Homologs of MerA and MerB were identified in 7.8 and 2.1% percent of genomes, respectively. MerA was identified in the genomes of 10 archaeal and 28 bacterial phyla previously unknown to code for this functionality. Likewise, MerB was identified in 2 archaeal and 11 bacterial phyla previously unknown to encode this functionality. Surprisingly, homologs of MerB were identified in a number of genomes (∼50% of all MerB-encoding genomes) that did not encode MerA, suggesting alternative mechanisms to detoxify Hg(II) once it is generated in the cytoplasm. Phylogenetic reconstruction of MerA place its origin in thermophilic Thermoprotei (Crenarchaeota), consistent with high levels of Hg(II) in geothermal environments, the natural habitat of this archaeal class. MerB appears to have been recruited to the mer operon relatively recently and likely among a mesophilic ancestor of Euryarchaeota and Thaumarchaeota. This is consistent with the functional dependence of MerB on MerA and the widespread distribution of mesophilic microorganisms that methylate Hg(II) at lower temperature. Collectively, these results expand the taxonomic and ecological distribution of mer-encoded functionalities, and suggest that selection for Hg(II) and MeHg detoxification is dependent not only on the availability and type of mercury compounds in the environment but also the physiological potential of the microbes who inhabit these environments. The expanded diversity and environmental distribution of MerAB identify new targets to prioritize for future research.
Collapse
Affiliation(s)
- Christos A. Christakis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
9
|
Soto-Avila L, Merce RC, Santos W, Castañeda N, Gutierrez-Ríos RM. Distribution and preservation of the components of the engulfment. What is beyond representative genomes? PLoS One 2021; 16:e0246651. [PMID: 33651833 PMCID: PMC7924749 DOI: 10.1371/journal.pone.0246651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2021] [Indexed: 12/16/2022] Open
Abstract
Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.
Collapse
Affiliation(s)
- Lizeth Soto-Avila
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- Centro de Investigacion en Dinamica Celular, Instituto de Investigacion en Ciencias Basicas y Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ricardo Ciria Merce
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Walter Santos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Nori Castañeda
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Rosa-María Gutierrez-Ríos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
10
|
Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat Ecol Evol 2020; 4:1661-1672. [PMID: 33077930 DOI: 10.1038/s41559-020-01299-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/05/2020] [Indexed: 11/08/2022]
Abstract
The transition between cell envelopes with one membrane (Gram-positive or monoderm) and those with two membranes (Gram-negative or diderm) is a fundamental open question in the evolution of Bacteria. Evidence of the presence of two independent diderm lineages, the Halanaerobiales and the Negativicutes, within the classically monoderm Firmicutes has blurred the monoderm/diderm divide and specifically anticipated that other members with an outer membrane (OM) might exist in this phylum. Here, by screening 1,639 genomes of uncultured Firmicutes for signatures of an OM, we highlight a third and deep branching diderm clade, the Limnochordia, strengthening the hypothesis of a diderm ancestor and the occurrence of independent transitions leading to the monoderm phenotype. Phyletic patterns of over 176,000 protein families constituting the Firmicutes pan-proteome identify those that strongly correlate with the diderm phenotype and suggest the existence of new potential players in OM biogenesis. In contrast, we find practically no largely conserved core of monoderms, a fact possibly linked to different ways of adapting to repeated OM losses. Phylogenetic analysis of a concatenation of main OM components totalling nearly 2,000 amino acid positions illustrates the common origin and vertical evolution of most diderm bacterial envelopes. Finally, mapping the presence/absence of OM markers onto the tree of Bacteria shows the overwhelming presence of diderm phyla and the non-monophyly of monoderm ones, pointing to an early origin of two-membraned cells and the derived nature of the Gram-positive envelope following multiple OM losses.
Collapse
|