1
|
Walton JL, Buchan A. Evidence for novel polycyclic aromatic hydrocarbon degradation pathways in culturable marine isolates. Microbiol Spectr 2024; 12:e0340923. [PMID: 38084970 PMCID: PMC10783047 DOI: 10.1128/spectrum.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.
Collapse
Affiliation(s)
- Jillian L. Walton
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Radzlin N, Yaakop AS, Goh KM, Liew KJ, Zakaria II, Kahar UM. Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities. Microorganisms 2022; 10:410. [PMID: 35208867 PMCID: PMC8874975 DOI: 10.3390/microorganisms10020410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
A halophilic marine bacterial strain, PS-C1, was isolated from Sekinchan beach in Selangor, Malaysia. The 16S rRNA gene sequence analysis indicated that strain PS-C1 was associated with the genus Celeribacter. To date, there have been no reports on enzymes from the genus Celeribacter. The present study reports on the cellular features of Celeribacter sp. PS-C1, its annotated genome sequence, and comparative genome analyses of Celeribacter glycoside hydrolase (GH) enzymes. The genome of strain PS-C1 has a size of 3.87 Mbp and a G+C content of 59.10%, and contains 3739 protein-coding genes. Detailed analysis using the Carbohydrate-Active enZYmes (CAZy) database revealed that Celeribacter genomes harboured at least 12 putative genes encoding industrially important GHs that are grouped as cellulases, β-glucanases, hemicellulases, and starch-degrading enzymes. Herein, the potential applications of these enzymes are discussed. Furthermore, the activities of two types of GHs (β-glucosidase and licheninase) in strain PS-C1 were demonstrated. These findings suggest that strain PS-C1 could be a reservoir of novel GH enzymes for lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Nurfatini Radzlin
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (N.R.); (I.I.Z.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (K.M.G.); (K.J.L.)
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (K.M.G.); (K.J.L.)
| | - Iffah Izzati Zakaria
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (N.R.); (I.I.Z.)
| | - Ummirul Mukminin Kahar
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (N.R.); (I.I.Z.)
| |
Collapse
|
3
|
Li Y, Ding YY, Dang YR, Bai Y, Guan L, Liu NH, Wang YZ, Kang ML, Zhang YQ, Zhang XY. Celeribacter litoreus sp. nov., isolated from intertidal sediment. Int J Syst Evol Microbiol 2022; 72. [PMID: 35156916 DOI: 10.1099/ijsem.0.005241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, non-flagellated and rod-shaped bacterium, strain ASW11-22T, was isolated from an intertidal sediment collected from a coastal area of Qingdao, PR China. The strain grew at 15-40 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0) and with 0.5-10 % (w/v) NaCl (optimum, 1.0 %). It hydrolysed gelatin and aesculin but did not reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ASW11-22T belonged to the genus Celeribacter, showing the highest sequence similarity to the type strains of Celeribacter halophilus MCCC 1A06432T (98.20 %) and Celeribacter ethanolicus NH195T (97.84 %). The genomic DNA G+C content was 59.1 mol%. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and its main polar lipids were phosphatidylglycerol and one unidentified aminolipid. The sole respiratory quinone of strain ASW11-22T was ubiquinone-10. On the basis of the polyphasic evidence presented in this paper, strain ASW11-22T represents a novel Celeribacter species, for which the name Celeribacter litoreus sp. nov. is proposed. The type strain is ASW11-22T (=KCTC 82495T=MCCC 1K05584T).
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yun-Yun Ding
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yun Bai
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Li Guan
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Mei-Lin Kang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Mazioti AA, Vasquez MI, Vyrides I. Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36506-36522. [PMID: 33709312 DOI: 10.1007/s11356-021-13153-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Bilge wastewater is a high strength, typically saline wastewater, originating from operation of ships. In this study, the treatment of real bilge wastewater was tested using pure isolated aerobic strains and mixed cultures (aerobic and anaerobic). The Chemical Oxygen Demand (COD) and ecotoxicity decrease were monitored over time, while the microbial dynamics alterations in mixed cultures were also recorded. The isolated strains Pseudodonghicola xiamenensis, Halomonas alkaliphila and Vibrio antiquaries were shown to significantly biodegrade bilge wastewater. Reasonable COD removal rates were achieved by aerobic mixed cultures (59%, 9 days), while anaerobic mixed cultures showed lower performance (34%, 51 days). The genus Pseudodonghicola was identified as dominant under aerobic conditions both in the mixed cultures and in the control sample (raw wastewater), after exposure to bilge wastewater, demonstrating natural proliferation of the genus and potential contribution to COD reduction. Biodegradation rates were higher when initial organic load was high, while the toxicity of raw wastewater partially decreased after treatment.
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus.
| |
Collapse
|
5
|
Li F, Huang Y, Hu W, Li Z, Wang Q, Huang S, Yu L, Liu S, Sun C, Pan X. Mesobaculum littorinae gen. nov., sp. nov., a novel bacterium isolated from a sea snail Littorina scabra. Int J Syst Evol Microbiol 2021; 71. [PMID: 34181514 DOI: 10.1099/ijsem.0.004821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members within the family Rhodbacteraceae are morphologically and genetically highly diverse, and originate mostly from coastal marine environments. In this study, a novel species of this family, designated M0103T, was isolated from the surface of a sea snail Littorina scabra. Strain M0103T is Gram-stain-negative, halophilic, non-motile and non-Bacteriochlorophyll a-producing bacterium. Several phenotypic characteristics of the isolate were similar to other species within this family, such as the sole respiratory quinone Q-10 and major fatty acid components C18 : 1 ω7c, C18 : 0 and C16 : 0. Strain M0103T contains a diphosphatidylglycerol, a phosphatidylglycerol, a phosphatidylcholine, a phosphatidy ethanolamine, a phosphatidylinositol, five unidentified phospholipids and four unidentified polar lipids. Based on the 16S rRNA gene sequence analysis, this isolate showed the closest phylogenetic relationship with 'Palleronia pontilimi' GH1-23T (95.1 %). Values of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) of genome sequences were of 70.1-76.4 % and 18.3-20.9 % between the isolate and 24 closely related type strains. Analysis the 4.0 Mb genome of strain M0103T revealed several putative genes associated with cellular stress resistance, which may play protective roles for the isolate in the adaptation to a marine environment. Phylogenetic, phenotypic and chemotaxonomic analyses suggested that strain M0103T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Mesobaculum littorinae gen. nov., sp. nov. is proposed. The type strain is M0103T (=MCCC 1K03619T=KCTC 62358T).
Collapse
Affiliation(s)
- Fei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Yuanlin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Wenjin Hu
- State Key Laboratory of Non-Food Biomass Energy and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Bioscience and Technology Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Zhe Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Lian Yu
- Light Industry and Food Engineering College, Guangxi University, 530007, Nanning, PR China
| | - Shaowei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| |
Collapse
|
6
|
Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00806-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 2020; 104:6397-6411. [PMID: 32458139 DOI: 10.1007/s00253-020-10688-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023]
Abstract
The influence of crude oil and chemical dispersant was evaluated over planktonic bacteria and biofilms grown on API 5L steel surfaces in microcosm systems. Three conditions were simulated, an untreated marine environment and a marine environment with the presence of crude oil and a containing crude oil and chemical dispersant. The results of coupon corrosion rates indicated that in the oil microcosm, there was a high corrosion rate when compared with the other two systems. Analysis of bacterial communities by 16S rRNA gene sequencing described a clear difference between the different treatments. In plankton communities, the Bacilli and Gammaproteobacteria classes were the most present in numbers of operational taxonomic unit (OTUs). The Vibrionales, Oceanospirillales, and Alteromonadales orders were predominant in the treatment with crude oil, whereas in the microcosm containing oil and chemical dispersant, mainly members of Bacillales order were detected. In the communities analyzed from biofilms attached to the coupons, the most preponderant class was Alphaproteobacteria, followed by Gammaproteobacteria. In the control microcosm, there was a prevalence of the orders Rhodobacterales, Aeromonadales, and Alteromonadales, whereas in the dispersed oil and oil systems, the members of the order Rhodobacterales were present in a larger number of OTUs. These results demonstrate how the presence of a chemical dispersant and oil influence the corrosion rate and bacterial community structures present in the water column and biofilms grown on API 5L steel surfaces in a marine environment. KEY POINTS: • Evaluation of the effects of oil and chemical surfactants on the corrosion of API 5L. • Changes in microbial communities do not present corrosive biofilm on API 5L coupons.
Collapse
|
8
|
Complete Genome Sequence of Celeribacter baekdonensis Strain LH4, a Thiosulfate-Oxidizing Alphaproteobacterial Isolate from Gulf of Mexico Continental Slope Sediments. GENOME ANNOUNCEMENTS 2018; 6:6/20/e00434-18. [PMID: 29773637 PMCID: PMC5958252 DOI: 10.1128/genomea.00434-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the closed genome sequences of Celeribacter baekdonensis strain LH4 and five unnamed plasmids obtained through PacBio sequencing with 99.99% consensus concordance. The genomes contained several distinctive features not found in other published Celeribacter genomes, including the potential to aerobically degrade styrene and other phenolic compounds.
Collapse
|