1
|
Park SY, Lim SR, Son JS, Kim HK, Yoon SW, Jeong DG, Lee MS, Lee JR, Lee DH, Kim JH. Complete Genome Sequence of Aeromonas rivipollensis KN-Mc-11N1, Isolated from a Wild Nutria (Myocastor coypus) in South Korea. Microbiol Resour Announc 2018; 7:e00907-18. [PMID: 30533878 PMCID: PMC6256423 DOI: 10.1128/mra.00907-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
We report here the complete genome sequence of Aeromonas rivipollensis KN-Mc-11N1, which was isolated from a wild nutria (Myocastor coypus) in South Korea. Genomic analysis indicated that A. rivipollensis may have zoonotic potential similar to that of other aeromonads, and nutria could be one of the sources of transmission of zoonotic pathogens to humans.
Collapse
Affiliation(s)
- Seon Young Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Animal Science, College of Life Sciences, Pusan National University, Miryang, Republic of Korea
| | - Se Ra Lim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-analytical Science Division, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jee Soo Son
- iNtRON Biotechnology, Inc., Seongnam, Republic of Korea
| | - Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-analytical Science Division, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-analytical Science Division, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jung Ro Lee
- Division of Ecological Conservation Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - Do-Hun Lee
- Division of Ecological Conservation Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Talagrand-Reboul E, Roger F, Kimper JL, Colston SM, Graf J, Latif-Eugenín F, Figueras MJ, Petit F, Marchandin H, Jumas-Bilak E, Lamy B. Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case. Front Microbiol 2017; 8:621. [PMID: 28458658 PMCID: PMC5394120 DOI: 10.3389/fmicb.2017.00621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Aeromonas media is an opportunistic pathogen for human and animals mainly found in aquatic habitats and which has been noted for significant genomic and phenotypic heterogeneities. We aimed to better understand the population structure and diversity of strains currently affiliated to A. media and the related species A. rivipollensis. Forty-one strains were included in a population study integrating, multilocus genetics, phylogenetics, comparative genomics, as well as phenotypics, lifestyle, and evolutionary features. Sixteen gene-based multilocus phylogeny delineated three clades. Clades corresponded to different genomic groups or genomospecies defined by phylogenomic metrics ANI (average nucleotide identity) and isDDH (in silico DNA-DNA hybridization) on 14 whole genome sequences. DL-lactate utilization, cefoxitin susceptibility, nucleotide signatures, ribosomal multi-operon diversity, and differences in relative effect of recombination and mutation (i.e., in evolution mode) distinguished the two species Aeromonas media and Aeromonas rivipollensis. The description of these two species was emended accordingly. The genome metrics and comparative genomics suggested that a third clade is a distinct genomospecies. Beside the species delineation, genetic and genomic data analysis provided a more comprehensive knowledge of the cladogenesis determinants at the root and inside A. media species complex among aeromonads. Particular lifestyles and phenotypes as well as major differences in evolution modes may represent putative factors associated with lineage emergence and speciation within the A. media complex. Finally, the integrative and populational approach presented in this study is considered broadly in order to conciliate the delineation of taxonomic species and the population structure in bacterial genera organized in species complexes.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département d'Hygiène Hospitalière, CHRU de MontpellierMontpellier, France
| | - Frédéric Roger
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France
| | - Jean-Luc Kimper
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France
| | - Sophie M Colston
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| | - Fadua Latif-Eugenín
- Unidad de Microbiologia, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i VirgiliReus, Spain
| | - Maria José Figueras
- Unidad de Microbiologia, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i VirgiliReus, Spain
| | - Fabienne Petit
- Normandie Univ, UNIROUEN, UNICAEN, Centre National de la Recherche Scientifique, M2CRouen, France.,Sorbonne Universités, UPMC, Centre National de la Recherche Scientifique, EPHE, UMR 7619 METISParis, France
| | - Hélène Marchandin
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département de Bactériologie, CHRU de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département d'Hygiène Hospitalière, CHRU de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France.,Département de Bactériologie, CHU de NiceNice, France
| |
Collapse
|
3
|
Glenwright H, Pohl S, Navarro F, Miro E, Jiménez G, Blanch AR, Harwood CR. The Identification of Intrinsic Chloramphenicol and Tetracycline Resistance Genes in Members of the Bacillus cereus Group ( sensu lato). Front Microbiol 2017; 7:2122. [PMID: 28101085 PMCID: PMC5209696 DOI: 10.3389/fmicb.2016.02122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 11/24/2022] Open
Abstract
Bacillus toyonensis strain BCT-7112T (NCIMB 14858T) has been widely used as an additive in animal nutrition for more than 30 years without reports of adverse toxigenic effects. However, this strain is resistant to chloramphenicol and tetracycline and it is generally considered inadvisable to introduce into the food chain resistance determinants capable of being transferred to other bacterial strains, thereby adding to the pool of such determinants in the gastro-enteric systems of livestock species. We therefore characterized the resistance phenotypes of this strain and its close relatives to determine whether they were of recent origin, and therefore likely to be transmissible. To this end we identified the genes responsible for chloramphenicol (catQ) and tetracycline (tetM) resistance and confirmed the presence of homologs in other members of the B. toyonensis taxonomic unit. Unexpectedly, closely related strains encoding these genes did not exhibit chloramphenicol and tetracycline resistance phenotypes. To understand the differences in the behaviors, we cloned and expressed the genes, together with their upstream regulatory regions, into Bacillus subtilis. The data showed that the genes encoded functional proteins, but were expressed inefficiently from their native promoters. B. toyonensis is a taxonomic unit member of the Bacillus cereus group (sensu lato). We therefore extended the analysis to determine the extent to which homologous chloramphenicol and tetracycline resistance genes were present in other species within this group. This analysis revealed that homologous genes were present in nearly all representative species within the B. cereus group (sensu lato). The absence of known transposition elements and the observations that they are found at the same genomic locations, indicates that these chloramphenicol and tetracycline resistance genes are of ancient origin and intrinsic to this taxonomic group, rather than recent acquisitions. In this context we discuss definitions of what are and are not intrinsic genes, an issue that is of fundamental importance to both Regulatory Authorities, and the animal feed and related industries.
Collapse
Affiliation(s)
- Helen Glenwright
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle UniversityNewcastle upon Tyne, UK
| | - Susanne Pohl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle UniversityNewcastle upon Tyne, UK
| | - Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant PauBarcelona, Spain
| | - Elisenda Miro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant PauBarcelona, Spain
| | | | - Anicet R. Blanch
- Department of Microbiology, University of BarcelonaBarcelona, Spain
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
4
|
Munson E, Carroll KC. What's in a Name? New Bacterial Species and Changes to Taxonomic Status from 2012 through 2015. J Clin Microbiol 2017; 55:24-42. [PMID: 27795334 PMCID: PMC5228236 DOI: 10.1128/jcm.01379-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the International Journal of Systematic and Evolutionary Microbiology Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the Journal of Clinical Microbiology on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through 2015.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|