1
|
Lee SH, Yoo Y, Kwon DY, Khim JS, Xu X, Kim B, Choi IG, Kim JJ. Tenacibaculum tangerinum sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 38117208 DOI: 10.1099/ijsem.0.006203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
An orange-coloured bacterium, designated as strain GRR-S3-23T, was isolated from a tidal flat sediment collected from Garorim Bay, Chuncheongbuk-do, Republic of Korea. Cells of GRR-S3-23T were aerobic, Gram-stain-negative, rod-shaped and motile. GRR-S3-23T grew at 18-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.0) and with 2-4 % NaCl (optimum, 2-3 % w/v). Results of 16S rRNA gene sequence analysis indicated that GRR-S3-23T was closely related to Tenacibaculum aiptasiae a4T (97.6 %), followed by Tenacibaculum aestuarii SMK-4T (97.5 %), Tenacibaculum mesophilum MBIC 1140T (97.4 %), Tenacibaculum singaporense TLL-A2T (97.3 %), Tenacibaculum crassostreae JO-1T (97.2 %),and Tenacibaculum sediminilitoris YKTF-3T (97.1 %). The average amino acid identity values between GRR-S3-23T and the related strains were 86.8-72.8 %, the average nucleotide identity values were 83.3-74.1 %, and the digital DNA-DNA hybridization values were 27.0-19.6 %. GRR-S3-23T possessed menaquinone-6 (MK-6) as major respiratory quinone and had summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 20.6 %) and iso-C15 : 1G (10.8 %) as major fatty acids (>10.0 %). The polar lipid profiles of GRR-S3-23T contained phosphatidylethanolamine, one unidentified aminolipid, one unidentified aminophospholipid, three unidentified lipids, one unidentified glycolipid and four unidentified phospholipids. The DNA G+C content of GRR-S3-23T was 33.7%. On the basis of the results of the polyphasic analysis involving phylogenetic, phylogenomic, physiological and chemotaxonomic analyses described in this study, GRR-S3-23T is considered to represent a novel species within the genus Tenacibaculum, for which the name Tenacibaculum tangerinum is proposed. The type strain is GRR-S3-23T (=KCTC 102029T=KACC 23271T=JCM 36353T).
Collapse
Affiliation(s)
- Sang Hyun Lee
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeonjae Yoo
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dae Young Kwon
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Science and Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Xiaoyue Xu
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Bogun Kim
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Nowlan JP, Lumsden JS, Russell S. Advancements in Characterizing Tenacibaculum Infections in Canada. Pathogens 2020; 9:pathogens9121029. [PMID: 33302445 PMCID: PMC7763822 DOI: 10.3390/pathogens9121029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tenacibaculum is a genus of gram negative, marine, filamentous bacteria, associated with the presence of disease (tenacibaculosis) at aquaculture sites worldwide; however, infections induced by this genus are poorly characterized. Documents regarding the genus Tenacibaculum and close relatives were compiled for a literature review, concentrating on ecology, identification, and impacts of potentially pathogenic species, with a focus on Atlantic salmon in Canada. Tenacibaculum species likely have a cosmopolitan distribution, but local distributions around aquaculture sites are unknown. Eight species of Tenacibaculum are currently believed to be related to numerous mortality events of fishes and few mortality events in bivalves. The clinical signs in fishes often include epidermal ulcers, atypical behaviors, and mortality. Clinical signs in bivalves often include gross ulcers and discoloration of tissues. The observed disease may differ based on the host, isolate, transmission route, and local environmental conditions. Species-specific identification techniques are limited; high sequence similarities using conventional genes (16S rDNA) indicate that new genes should be investigated. Annotating full genomes, next-generation sequencing, multilocus sequence analysis/typing (MLSA/MLST), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), and fatty acid methylesters (FAME) profiles could be further explored for identification purposes. However, each aforementioned technique has disadvantages. Since tenacibaculosis has been observed world-wide in fishes and other eukaryotes, and the disease has substantial economic impacts, continued research is needed.
Collapse
Affiliation(s)
- Joseph P. Nowlan
- Department of Pathobiology, University of Guelph, Guelph, OT N1G 2W1, Canada;
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada;
- Correspondence:
| | - John S. Lumsden
- Department of Pathobiology, University of Guelph, Guelph, OT N1G 2W1, Canada;
| | - Spencer Russell
- Center for Innovation in Fish Health, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada;
| |
Collapse
|
3
|
Rosales SM, Sinigalliano C, Gidley M, Jones PR, Gramer LJ. Oceanographic habitat and the coral microbiomes of urban-impacted reefs. PeerJ 2019; 7:e7552. [PMID: 31565557 PMCID: PMC6743471 DOI: 10.7717/peerj.7552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/25/2019] [Indexed: 11/20/2022] Open
Abstract
Coral reefs are in decline worldwide. In response to this habitat loss, there are efforts to grow, outplant, and restore corals in many regions. The physical oceanographic habitat of corals-such as sea temperature, waves, ocean currents, and available light-is spatially heterogeneous. We therefore hypothesize that outplant location may affect microbiomes, and ultimately, coral health and restoration success. We evaluated the influence of the physical oceanographic habitat on microbes in wild Porites astreoides and Siderastrea siderea. Tissue samples were collected at four Florida reefs in March, June, and September of 2015. We estimated oceanographic conditions from moored instruments, diver observations, remote sensing data, and numerical models. We analyzed microbiomes using amplicon 16S rRNA high-throughput sequencing data. We found microbial alpha-diversity negatively correlated with in situ sea temperature (which represented both the annual cycle and upwelling), as well as modeled alongshore currents, in situ sea-level, and modeled tide. Microbial beta-diversity correlated positively with significant wave height and alongshore currents from models, remotely-sensed relative turbidity, and in situ temperature. We found that archaea from the order Marine Group II decrease with increases in significant wave height, suggesting that this taxon may be influenced by waves. Also, during times of high wave activity, the relative abundance of bacteria from the order Flavobacteriales increases, which may be due to resuspension and cross-shelf transport of sediments. We also found that bacteria from the order SAR86 increase in relative abundance with increased temperature, which suggests that this taxon may play a role in the coral microbiome during periods of higher temperature. Overall, we find that physical oceanographic variability correlates with the structure of these coral microbiomes in ways that could be significant to coral health.
Collapse
Affiliation(s)
- Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Maribeth Gidley
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Paul R Jones
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Lewis J Gramer
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| |
Collapse
|
4
|
Park S, Choi J, Park JM, Yoon JH. Aestuariimonas insulae gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2018; 68:1365-1371. [DOI: 10.1099/ijsem.0.002684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jeehyun Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Ji-Min Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
5
|
Kim YO, Park IS, Park S, Nam BH, Park JM, Kim DG, Yoon JH. Tenacibaculum haliotis sp. nov., isolated from the gut of an abalone Haliotis discus hannai. Int J Syst Evol Microbiol 2017; 67:3268-3273. [PMID: 28829017 DOI: 10.1099/ijsem.0.002099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-flagellated, gliding, non-spore-forming bacterial strain, designated RA3-2T, was isolated from the gut of an abalone (Haliotis discus hannai) collected from the sea around Jeju island, South Korea, and subjected to a polyphasic taxonomic study. RA3-2T grew optimally at 20 °C and in the presence of 2.0-3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences indicated that RA3-2T fell within the clade comprising the type strains of species of the genus Tenacibaculum, clustering with the type strains of Tenacibaculum soleae, Tenacibaculum ovolyticum and Tenacibaculum dicentrarchi; showing 16S rRNA gene sequence similarity values of 96.2-96.8 %. The novel strain exhibited 16S rRNA gene sequence similarity values of 93.5-96.9 % to the type strains of the other species of the genus Tenacibaculum. RA3-2T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids of RA3-2T were phosphatidylethanolamine, two unidentified lipids, one unidentified aminophospholipid and one unidentified glycolipid. The DNA G+C content of RA3-2T was 31.7 mol%. The differential phenotypic properties, together with the phylogenetic data, revealed that RA3-2T is separated from other species of the genus Tenacibaculum with validly published names. On the basis of the data presented, RA3-2T is considered to represent a novel species of the genus Tenacibaculum, for which the name Tenacibaculum haliotis sp. nov. is proposed. The type strain is RA3-2T (=KCTC 52419T=NBRC 112382T).
Collapse
Affiliation(s)
- Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science (NIFS), Gijang, Busan 619-705, Republic of Korea
| | - In-Suk Park
- Biotechnology Research Division, National Institute of Fisheries Science (NIFS), Gijang, Busan 619-705, Republic of Korea
| | - Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science (NIFS), Gijang, Busan 619-705, Republic of Korea
| | - Ji-Min Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science (NIFS), Gijang, Busan 619-705, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|