1
|
Liu M, Ding RX, Zhang YX, Li HZ, Wang QM. Wickerhamomyces corioli f.a., sp. nov. , a novel yeast species discovered in two mushroom species. Int J Syst Evol Microbiol 2024; 74. [PMID: 38591772 DOI: 10.1099/ijsem.0.006333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.
Collapse
Affiliation(s)
- Min Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, PR China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, Hebei, PR China
| | - Ruo-Xin Ding
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, PR China
| | - Yu-Xuan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, PR China
| | - Hao-Ze Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, PR China
| | - Qi-Ming Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, PR China
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, Hebei, PR China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, Hebei, PR China
| |
Collapse
|
2
|
Nundaeng S, Suwannarach N, Limtong S, Khuna S, Kumla J, Lumyong S. An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. J Fungi (Basel) 2021; 7:957. [PMID: 34829244 PMCID: PMC8618796 DOI: 10.3390/jof7110957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number of biotechnologically applications of environment, food, beverage industries, biofuel, medicine and agriculture. However, in some studies, Wickerhamomyces species have been identified as an opportunistic human pathogen. Through an overview of diversity, taxonomy and recently published literature, we have updated a brief review of Wickerhamomyces. Moreover, two new Wickerhamomyces species were isolated from the soil samples of Assam tea (Camellia sinensis var. assamica) that were collected from plantations in northern Thailand. Herein, we have identified these species as W. lannaensis and W. nanensis. The identification of these species was based on phenotypic (morphological, biochemical and physiological characteristics) and molecular analyses. Phylogenetic analyses of a combination of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) of ribosomal DNA genes support that W. lannaensis and W. nanensis are distinct from other species within the genus Wickerhamomyces. A full description, illustrations and a phylogenetic tree showing the position of both new species have been provided. Accordingly, a new combination species, W. myanmarensis has been proposed based on the phylogenetic results. A new key for species identification is provided.
Collapse
Affiliation(s)
- Supakorn Nundaeng
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
3
|
Screening and Optimization of Process Parameters for the Production of l-asparaginase by Indigenous Fungal-Type Strains. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-020-01056-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Faghihi Shahrestani F, Tajabadi Ebrahimi M, Bayat M, Hashemi J, Razavilar V. The study of phenotypic and genotypic importance of fungal isolated from traditional milk and cheese in Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Chai CY, Huang LN, Cheng H, Liu WJ, Hui FL. Wickerhamomyces menglaensis f.a., sp. nov., a yeast species isolated from rotten wood. Int J Syst Evol Microbiol 2019; 69:1509-1514. [PMID: 30893031 DOI: 10.1099/ijsem.0.003350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five strains, NUNU 16637, NYNU 16645, NYNU 1673, NYNU 1680 and NYNU 1689, of a novel ascomycetous yeast were isolated from the Xishuangbanna tropical rainforest, Yunnan Province, PR China. The five strains shared identical sequences in both of the D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions. Sequence analysis showed that they represent undescribed yeast species belonging to the genus Wickerhamomyces. They differed from their closest known species, Wickerhamomyces xylosivorus NBRC 111553T, by 3.4 % sequence divergence (14 substitutions and six gaps out of 584 bp) in the D1/D2 domains and by 9.6 % sequence divergence (28 substitutions and 24 gaps over 543 bp) in the ITS regions, respectively. The five strains of novel species reproduced asexually; no sexual reproduction could be found. In contrast to W. xylosivorus, the novel yeast species were able to assimilate l-arabinose, inulin, soluble starch, d-mannitol and citrate, and unable to assimilate trehalose, raffinose, 5-keto-d-gluconate, d-gluconate, ethanol, ethylamine and cadaverine. Growth was observed at 35 °C. The name Wickerhamomyces menglaensis f.a., sp. nov. is proposed to accommodate these strains, with NYNU 1673 as the holotype.
Collapse
Affiliation(s)
- Chun-Yue Chai
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Lin-Na Huang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Han Cheng
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Wen-Jing Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
6
|
Kobayashi R, Kanti A, Kawasaki H. Three novel species of d-xylose-assimilating yeasts, Barnettozyma xylosiphila sp. nov., Barnettozyma xylosica sp. nov. and Wickerhamomyces xylosivorus f.a., sp. nov. Int J Syst Evol Microbiol 2017; 67:3971-3976. [PMID: 28895520 DOI: 10.1099/ijsem.0.002233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study describes three novel xylose-assimilating yeasts, which were isolated from decayed wood collected from Bung Hatta Botanical Garden in West Sumatra and Cibodas Botanic Garden in West Java, or from litter from Eka Karya Bali Botanic Garden in Bali, Indonesia. Phylogenetic analysis was performed based on the sequences of the D1/D2 domains of the large ribosomal subunit (LSU), the small ribosomal subunit (SSU), the internal transcribed spacer (ITS) and elongation factor-1α (EF-1α), and the three strains were found to represent three novel species belonging to genera Barnettozyma or Wickerhamomyces. The morphological, biochemical and physiological characteristics indicated that the strains were distinct from other closely related species. Strains 13Y206T and 14Y196T belonging to the Barnettozyma clade are described as the type strains of Barnettozyma xylosiphila sp. nov. (type strain 13Y206T=NBRC 110202T=InaCC Y726T; MycoBank MB808598) and Barnettozyma xylosica sp. nov. (type strain 14Y196T=NBRC 111558T=InaCC Y1030T; MycoBank MB819485). Strain 14Y125T belonging to the Wickerhamomyces clade is described as the type strain of Wickerhamomyces xylosivorus f.a., sp. nov. (type strain 14Y125T=NBRC 111553T=InaCC Y1026T; MycoBank MB819484).
Collapse
Affiliation(s)
- Ryuichi Kobayashi
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Atit Kanti
- Division of Microbiology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| |
Collapse
|