1
|
Huang HJ, Zhang X, Sun XW, Chen B, Li XT, Zhou N, Abdugheni R, Cheng QY, Zhang TJ, Liu Y, Jiang Y, Deng Y, Liu SJ, Jiang CY. Xiashengella succiniciproducens gen. nov., sp. nov., a succinate-producing bacterium isolated from an anaerobic digestion tank in the family Marinilabiliaceae of the order Bacteroidales. Arch Microbiol 2024; 206:141. [PMID: 38441685 DOI: 10.1007/s00203-024-03909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).
Collapse
Affiliation(s)
- Hao-Jie Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Wei Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Biao Chen
- Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Yin Cheng
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Tie-Jun Zhang
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Yao Liu
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Yong Jiang
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Ye Deng
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China.
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
2
|
Gonzalez SV, Dafforn KA, Gribben PE, O'Connor WA, Johnston EL. Organic enrichment reduces sediment bacterial and archaeal diversity, composition, and functional profile independent of bioturbator activity. MARINE POLLUTION BULLETIN 2023; 196:115608. [PMID: 37797537 DOI: 10.1016/j.marpolbul.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Eutrophication is a worldwide issue that can disrupt ecosystem processes in sediments. Studies have shown that macrofauna influences sediment processes by engineering environments that constrain microbial communities. Here, we explored the effect of different sizes of the Sydney cockle (Anadara trapezia), on bacterial and archaeal communities in natural and experimentally enriched sediments. A mesocosm experiment was conducted with two enrichment conditions (natural or enriched) and 5 cockle treatments (small, medium, large, mixed sizes and a control). This study was unable to detect A. trapezia effects on microbial communities irrespective of body size. However, a substantial decrease of bacterial richness, diversity, and structural and functional shifts, were seen with organic enrichment of sediments. Archaea were similarly changed although the magnitude of effect was less than for bacteria. Overall, we found evidence to suggest that A. trapezia had limited capacity to affect sediment microbial communities and mitigate the effects of organic enrichment.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia.
| | - Katherine A Dafforn
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Sydney, Australia
| | - Paul E Gribben
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Fisheries NSW, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Emma L Johnston
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia
| |
Collapse
|
3
|
Burbick CR, Munson E, Lawhon SD, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria (Including Members of the Phylum Planctomycetota) Isolated from Aquatic Host Species Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142622. [PMID: 36719221 PMCID: PMC9945501 DOI: 10.1128/jcm.01426-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased interest in farmed aquatic species, aquatic conservation measures, and microbial metabolic end-product utilization have translated into a need for awareness and recognition of novel microbial species and revisions to bacterial taxonomy. Because this need has largely been unmet, through a 4-year literature review, we present lists of novel and revised bacterial species (including members of the phylum Planctomycetota) derived from aquatic hosts that can serve as a baseline for future biennial summaries of taxonomic revisions in this field. Most new and revised taxa were noted within oxidase-positive and/or nonglucose fermentative Gram-negative bacilli, including members of the Tenacibaculum, Flavobacterium, and Vibrio genera. Valid and effectively published novel members of the Streptococcus, Erysipelothrix, and Photobacterium genera are additionally described from disease pathogenesis perspectives.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Podosokorskaya OA, Kochetkova TV, Novikov AA, Toshchakov SV, Elcheninov AG, Kublanov IV. Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia. Syst Appl Microbiol 2020; 43:126126. [DOI: 10.1016/j.syapm.2020.126126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023]
|
5
|
Atashgahi S. Discovered by genomics: putative reductive dehalogenases with N-terminus transmembrane helixes. FEMS Microbiol Ecol 2020; 95:5426821. [PMID: 30942854 PMCID: PMC6797604 DOI: 10.1093/femsec/fiz048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Attempts for bioremediation of toxic organohalogens resulted in the identification of organohalide-respiring bacteria harbouring reductive dehalogenases (RDases) enzymes. RDases consist of the catalytic subunit (RdhA, encoded by rdhA) that does not have membrane-integral domains, and a small putative membrane anchor (RdhB, encoded by rdhB) that (presumably) locates the A subunit to the outside of the cytoplasmic membrane. Recent genomic studies identified a putative rdh gene in an uncultured deltaproteobacterial genome that was not accompanied by an rdhB gene, but contained transmembrane helixes in N-terminus. Therefore, rather than having a separate membrane anchor protein, this putative RDase is likely a hybrid of RdhA and RdhB, and directly connected to the membrane with transmembrane helixes. However, functionality of the hybrid putative RDase remains unknown. Further analysis showed that the hybrid putative rdh genes are present in the genomes of pure cultures and uncultured members of Bacteriodetes and Deltaproteobacteria, but also in the genomes of the candidate divisions. The encoded hybrid putative RDases have cytoplasmic or exoplasmic C-terminus localization, and cluster phylogenetically separately from the existing RDase groups. With increasing availability of (meta)genomes, more diverse and likely novel rdh genes are expected, but questions regarding their functionality and ecological roles remain open.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Wang FQ, Chen ZJ, Yang JM, Wang WJ, Feng YW, Li Z, Sun GH. Labilibacter sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2020; 70:321-326. [PMID: 31639076 DOI: 10.1099/ijsem.0.003758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped and facultatively anaerobic strain, designated CG51T, was isolated from marine sediment collected from a coastal area in Weihai, PR China. Strain CG51T grew at 4-37 °C (optimum, 28-30 °C), with 1.0-6.0 % (w/v) NaCl (2.0-3.0 %) and at pH 6.0-8.5 (pH 7.0-7.5). The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Major polar lipids included an unidentified lipid and a phospholipid. The respiratory quinone was MK-7 and the genomic DNA G+C content was 35.9 mol%. The results of phylogenetic analysis based on 16S rRNA gene sequences placed strain CG51T in the genus Labilibacter with the close relatives being Labilibacter marinus Y11T and Labilibacter aurantiacus HQYD1T, exhibiting 96.5 and 96.3 % 16S rRNA pairwise similarity, values which are clearly below the 98.7 % threshold value recommended for species demarcation. Based on the phylogenetic, physiological, chemotaxonomic and genetic data, strain CG51T represents a novel species within the genus Labilibacter, for which the name Labilibacter sediminis sp. nov. is proposed. The type strain is CG51T (=MCCC 1K03739T=JCM 33138T).
Collapse
Affiliation(s)
- Feng-Qing Wang
- School of Agriculture, Ludong University, Yantai 264205, PR China
| | - Zhu-Jie Chen
- Marine College, Shandong University, Weihai, 264209, PR China
| | - Jian-Min Yang
- School of Agriculture, Ludong University, Yantai 264205, PR China
| | - Wei-Jun Wang
- School of Agriculture, Ludong University, Yantai 264205, PR China
| | - Yan-Wei Feng
- School of Agriculture, Ludong University, Yantai 264205, PR China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264205, PR China
| | - Guo-Hua Sun
- School of Agriculture, Ludong University, Yantai 264205, PR China
| |
Collapse
|
7
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
8
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
9
|
Chen L, Hu JS, Xu JL, Shao CL, Wang GY. Biological and Chemical Diversity of Ascidian-Associated Microorganisms. Mar Drugs 2018; 16:md16100362. [PMID: 30275404 PMCID: PMC6212887 DOI: 10.3390/md16100362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022] Open
Abstract
Ascidians are a class of sessile filter-feeding invertebrates, that provide unique and fertile niches harboring various microorganisms, such as bacteria, actinobacteria, cyanobacteria and fungi. Over 1000 natural products, including alkaloids, cyclic peptides, and polyketides, have been isolated from them, which display diverse properties, such as antibacterial, antifungal, antitumor, and anti-inflammatory activities. Strikingly, direct evidence has confirmed that ~8% of natural products from ascidians are actually produced by symbiotic microorganisms. In this review, we present 150 natural products from microorganisms associated with ascidians that have been reported up to 2017.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Jin-Shuang Hu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Jia-Lei Xu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Chang-Lun Shao
- Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| |
Collapse
|
10
|
Wang FQ, Ren LH, Zou RJ, Sun YZ, Liu XJ, Jiang F, Liu LJ. Carboxylicivirga sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2018; 68:1896-1901. [PMID: 29658858 DOI: 10.1099/ijsem.0.002761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A yellow-pigmented bacterial strain (JR1T) isolated from a sediment sample was subjected to a taxonomic study, based on phenotypic, genetic and physiological characterization. Here, we describe the cultivation and characteristics of strain JR1T, a novel member of the genus Carboxylicivirga in the family Marinilabiliaceae. Cells of strain JR1T were rod-shaped, Gram-stain-negative, non-motile and facultatively anaerobic. The temperature range for growth was 15-42 °C (optimum, 33 °C) and the pH range for growth was pH 6.0-8.5 (optimum, pH 7.0-7.5). Growth occurred in the presence of 0.0-10.0 % (w/v) NaCl (optimum 2.0-3.0 %). 16S rRNA gene sequence analysis produced results with 97.4 % similarity to Carboxylicivirga taeanensisMEBiC 08903T, 96.8 % similarity to Carboxylicivirga mesophilaMEBiC 07026T, 94.9 % similarity to Carboxylicivirga linearis FB218T and 94.6 % similarity to Carboxylicivirga flava Q15T. The DNA G+C content was 42.3 mol% and the major fatty acids were iso-C15 : 0, C15 : 0, anteiso-C15 : 0, C17 : 1ω6c and iso-C17 : 0-3OH. The major polar lipids detected were phosphatidylethanolamine and two unidentified lipids; the major respiratory quinone detected was MK-7. The results of the phenotypical, phylogenetic and biochemical analyses between the study strain and some related type strains indicated that this strain represent a novel species of the genus Carboxylicivirga within the family Marinilabiliaceae, for which the name Carboxylicivirga sediminis sp. nov. is proposed. The type strain is JR1T (=MCCC 1K03323T=KCTC 52869T).
Collapse
Affiliation(s)
- Feng-Qing Wang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Li-Hua Ren
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Rong-Jie Zou
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Yu-Zeng Sun
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiao-Jing Liu
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Fang Jiang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Li-Juan Liu
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| |
Collapse
|
11
|
Geofilum rhodophaeum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:3913-3918. [DOI: 10.1099/ijsem.0.002223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|