1
|
Frank EM, Suarez C, Erb IK, Jephson T, Lindberg E, Paul CJ. Microbial Contamination in Urban Marine Sediments: Source Identification Using Microbial Community Analysis and Fecal Indicator Bacteria. Microorganisms 2025; 13:983. [PMID: 40431156 PMCID: PMC12114436 DOI: 10.3390/microorganisms13050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
We investigated the presence of the fecal indicator bacteria Escherichia coli, and other taxa associated with sewage communities in coastal sediments, near beaches with reported poor bathing water quality, focusing on the influence of effluent from a local wastewater treatment plant (WWTP) and combined sewer overflows (CSO). Using a three-year dataset, we found that treated wastewater effluent is a significant source of sewage-associated taxa and viable E. coli in the sediments and that no seasonal differences were observed between spring and summer samples. CSO events have a local and temporary effect on the microbial community of sediments, distinct from that of treated wastewater effluent. Sediments affected by CSO had higher abundances of families Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae. Sewage releases may also impact the natural community of the sediments, as higher abundances of marine sulfur-cycling bacteria were noticed in locations where sewage taxa were also abundant. Microbial contamination at locations distant from known CSO and treatment plant outlets suggests additional sources, such as stormwater. This study highlights that while coastal sediments can be a reservoir of E. coli and contain sewage-associated taxa, their distribution and potential origins are complex and are likely not linked to a single source.
Collapse
Affiliation(s)
- Ellinor M. Frank
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- Sweden Water Research, Fabriksgatan 2B, SE-222 35 Lund, Sweden
| | - Carolina Suarez
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- Sweden Water Research, Fabriksgatan 2B, SE-222 35 Lund, Sweden
| | - Isabel K. Erb
- Sweden Water Research, Fabriksgatan 2B, SE-222 35 Lund, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Therese Jephson
- Sweden Water Research, Fabriksgatan 2B, SE-222 35 Lund, Sweden
| | - Elisabet Lindberg
- City of Helsingborg, Department of City Planning, Järnvägsgatan 22, SE-252 25 Helsingborg, Sweden
| | - Catherine J. Paul
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
2
|
Banzaraktsaeva TG, Lavrentyeva EV, Dambaev VB, Ulzetueva ID, Khakhinov VV. Taxonomic diversity of microbial communities in the cold sulfur spring Bezymyanny (Pribaikalsky district, Republic of Buryatia). Vavilovskii Zhurnal Genet Selektsii 2025; 29:268-278. [PMID: 40264802 PMCID: PMC12011627 DOI: 10.18699/vjgb-25-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 04/24/2025] Open
Abstract
The environmental conditions of cold sulfur springs favor the growth and development of abundant and diverse microbial communities with many unique sulfur cycle bacteria. In this work, the taxonomic diversity of microbial communities of three different biotopes (microbial mat, bottom sediment, and water) in the cold sulfur spring Bezymyanny located on the shore of Lake Baikal (Pribaikalsky district, Republic of Buryatia) was studied using high-throughput sequencing of the 16S rRNA gene. By sequencing the microbial mat, bottom sediment, and water samples, 76,972 sequences assigned to 1,714 ASVs (ASV, amplicon sequence variant) were obtained. Analysis of the ASV distribution by biotopes revealed a high percentage (66-93 %) of uniqueness in the three communities studied. An estimate of the alpha diversity index showed that bottom sediment community had higher indices, while microbial mat community was characterized by a lowest diversity. Bacteria of the phyla Pseudomonadota, Bacteroidota, Campylobacterota, Actinomycetota, Desulfobacterota dominated in different proportions in the studied communities. The features of the community structure of the studied biotopes were established. The microbial mat community was represented mainly by Thiothrix (43.2 %). The bottom sediment community was based on Sulfurovum (11.2 %) and co-dominated by unclassified taxa (3.2-1 %). Sequences assigned to the genera Novosphingobium, Nocardioides, Legionella, Brevundimonas, Sphingomonas, Bacillus, Mycobacterium, Sphingopyxis, Bradyrhizobium and Thiomicrorhabdus were found only in the water microbial community. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) were identified in all the communities studied, which indicates the ongoing processes of the sulfur cycle in the Bezymyanny spring ecosystem. It should be noted that sequences of unclassified and uncultivated sulfur cycle bacteria were present in all communities and a significant proportion of sequences (20.3-53.9 %) were not classified.
Collapse
Affiliation(s)
- T G Banzaraktsaeva
- Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - E V Lavrentyeva
- Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia D. Banzarov Buryat State University, Ulan-Ude, Russia
| | - V B Dambaev
- Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - I D Ulzetueva
- Baikal Institute of Nature Management of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - V V Khakhinov
- D. Banzarov Buryat State University, Ulan-Ude, Russia
| |
Collapse
|
3
|
Ghezzi D, Mangiaterra G, Scardino A, Fehervari M, Magnani M, Citterio B, Frangipani E. Characterization of bacterial communities associated with seabed sediments in offshore and nearshore sites to improve Microbiologically Influenced Corrosion mitigation on marine infrastructures. PLoS One 2024; 19:e0309971. [PMID: 39231176 PMCID: PMC11373832 DOI: 10.1371/journal.pone.0309971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Microbiologically Influenced Corrosion (MIC) is one of the main threats for marine infrastructures, leading to severe safety and environmental risks associated with structural failures and/or leakages of dangerous fluids, together with potential huge economic losses and reputational damage for the involved parts. For a safe design and a proper installation of infrastructure systems in contact with the seabed, a deep knowledge of the site-specific microbial community of the sediments should be beneficial. Therefore, in addition to the simple detection or the sole quantification of Sulphate-Reducing Bacteria (SRB), the whole characterization of the microbial members involved in MIC phenomena is desirable. In this study, 16S rRNA-based comparison between bacterial communities thriving in offshore and nearshore marine sediments was performed, with a focus on the main bacterial groups putatively responsible for MIC. The nearshore sediments were significantly enriched in bacterial members associated with human and organic compounds contamination belonging to the Bacteroidota, Desulfobacterota, and Firmicutes phyla, while the offshore sediments hosted Alphaproteobacteria, Nitrospinota, and Nitrospirota members, representative of a low anthropogenic impact. Quantitative PCR targeting the dsrA gene and detailed community analyses revealed that the nearshore sediments were significantly enriched in SRB mainly affiliated to the Desulfobulbus and Desulfosarcina genera potentially involved in biocorrosion, compared to the offshore ones. These results suggest that the bacterial community associated with the high concentration of organic compounds derived by an elevated anthropogenic impact is likely to favour MIC. Such observations highlight the importance of microbiological investigations as prevention strategy against MIC processes, aiming both at characterizing sites for the establishment of new infrastructures and at monitoring those already installed.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Arianna Scardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Mauro Fehervari
- R&D Engineering, Asset Based Services-Saipem SpA, Fano (PU), Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| |
Collapse
|
4
|
Wang X, Zhao YG, Mupindu P, Chen Y. Insight into characteristics of sulphur-based autotrophic denitrifying microbiota in the nitrate removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:1531-1541. [PMID: 36368900 DOI: 10.1080/09593330.2022.2147450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Mariculture wastewater is characterized by low organic carbon to nitrogen ratio (C/N) but high nitrate concentration, which makes it difficult to remove nitrate by the completely heterotrophic denitrification. However, high nitrate discharge poses a threat to the natural environment and human health. Thus, we enriched sulphur-based autotrophic denitrifying (SAD) microbiota and optimized the nitrate removal under different environmental factors and electron donor conditions. The results showed that the dominant genera in the enriched microbiota were previously confirmed autotrophic denitrifiers, Sulfurovum, Thioalkalispira-Sulfurivermis, and Sedimenticola, with a high relative abundance of 41.14%, 21.01%, and 6.17%. Among the environmental factors, pH was the key factor affecting SAD microbiota, and pH 7-9 favoured nitrate removal. However, high pH led to nitrite accumulation (e.g. 10 mg/L at pH = 9), which should be strictly avoided. With regard to electron donors, the optimal concentrations of thiosulphate and nitrate were 50 and 5 mg/L, respectively. The best organic carbon is acetate with an optimal concentration of 10 mg/L. Meanwhile, the initial concentration of thiosulphate was proportional to the nitrate removal rate, while higher concentrations of organic carbon stimulated the heterotrophic denitrification potential of microbiota and thus benefited to dentrification. This study showed that the enriched SAD microbiota was able to achieve efficient nitrate removal under suitable environmental conditions and mixed electron donors and thus presented the potential for application in the treatment of mariculture wastewater.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Matturro B, Di Franca ML, Tonanzi B, Cruz Viggi C, Aulenta F, Di Leo M, Giandomenico S, Rossetti S. Enrichment of Aerobic and Anaerobic Hydrocarbon-Degrading Bacteria from Multicontaminated Marine Sediment in Mar Piccolo Site (Taranto, Italy). Microorganisms 2023; 11:2782. [PMID: 38004793 PMCID: PMC10673493 DOI: 10.3390/microorganisms11112782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe's most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maria Letizia Di Franca
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Barbara Tonanzi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Magda Di Leo
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Santina Giandomenico
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| |
Collapse
|
6
|
Chen M, Conroy JL, Sanford RA, Wyman-Feravich DA, Chee-Sanford JC, Connor LM. Tropical lacustrine sediment microbial community response to an extreme El Niño event. Sci Rep 2023; 13:6868. [PMID: 37106028 PMCID: PMC10140070 DOI: 10.1038/s41598-023-33280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Salinity can influence microbial communities and related functional groups in lacustrine sediments, but few studies have examined temporal variability in salinity and associated changes in lacustrine microbial communities and functional groups. To better understand how microbial communities and functional groups respond to salinity, we examined geochemistry and functional gene amplicon sequence data collected from 13 lakes located in Kiritimati, Republic of Kiribati (2° N, 157° W) in July 2014 and June 2019, dates which bracket the very large El Niño event of 2015-2016 and a period of extremely high precipitation rates. Lake water salinity values in 2019 were significantly reduced and covaried with ecological distances between microbial samples. Specifically, phylum- and family-level results indicate that more halophilic microorganisms occurred in 2014 samples, whereas more mesohaline, marine, or halotolerant microorganisms were detected in 2019 samples. Functional Annotation of Prokaryotic Taxa (FAPROTAX) and functional gene results (nifH, nrfA, aprA) suggest that salinity influences the relative abundance of key functional groups (chemoheterotrophs, phototrophs, nitrogen fixers, denitrifiers, sulfate reducers), as well as the microbial diversity within functional groups. Accordingly, we conclude that microbial community and functional gene groups in the lacustrine sediments of Kiritimati show dynamic changes and adaptations to the fluctuations in salinity driven by the El Niño-Southern Oscillation.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jessica L Conroy
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert A Sanford
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Joanne C Chee-Sanford
- Department of Natural Resource and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA-ARS, Urbana, IL, USA
| | - Lynn M Connor
- Department of Natural Resource and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA-ARS, Urbana, IL, USA
| |
Collapse
|
7
|
Maltsev A, Zelenina D, Safonov A. Microbial Diversity and Authigenic Mineral Formation of Modern Bottom Sediments in the Littoral Zone of Lake Issyk-Kul, Kyrgyz Republic (Central Asia). BIOLOGY 2023; 12:642. [PMID: 37237455 PMCID: PMC10215221 DOI: 10.3390/biology12050642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
This article presents geochemical, mineralogical and microbiological characteristics of five samples of modern bottom sediments in the littoral zone of the high-mountain salty lake Issyk-Kul. The 16S rRNA gene sequencing method shows that the microbial community consists of organic carbon degraders (representatives of phyla: Proteobacteria, Chloroflexi, Bacteroidota and Verrucomicrobiota and families Anaerolineaceae and Hungateiclostridiaceae), photosynthetic microorganisms (representatives of Chloroflexi, phototrophic Acidobacteria, purple sulphur bacteria Chromatiaceae and cyanobacteria) and bacteria of the reducing branches of the sulphur biogeochemical cycle (representatives of Desulfobacterota, Desulfosarcinaceae and Desulfocapsaceae). The participation of microorganisms in processes in the formation of a number of authigenic minerals (calcite, framboidal pyrite, barite and amorphous Si) is established. The high diversity of microbial communities indicates the presence of labile organic components involved in modern biogeochemical processes in sediments. The active destruction of organic matter begins at the water-sediment interface.
Collapse
Affiliation(s)
- Anton Maltsev
- V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch, RAS, Novosibirsk 630090, Russia
| | - Darya Zelenina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey Safonov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
8
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
9
|
Hafez T, Ortiz-Zarragoitia M, Cagnon C, Cravo-Laureau C, Duran R. Cold sediment microbial community shifts in response to crude oil water-accommodated fraction with or without dispersant: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44640-44656. [PMID: 36694068 DOI: 10.1007/s11356-023-25264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
In cold environments, the low temperature slows down microbial metabolisms, such as the biodegradation processes of hydrocarbons, which are often stimulated by the addition of dispersants in oil spill disasters. In this study, we investigated the effects of hydrocarbon water-accommodated fraction (WAF) prepared with and without dispersant on benthic microbial communities in a microcosm experiment in which hydrocarbon removal was observed. Both WAFs contained similar polycyclic aromatic hydrocarbon (PAH) content. The microcosm experiment, set up with either pristine or contaminated sediments, was conducted for 21 days at 4 °C under WAF and WAF + dispersant conditions. The behavior of bacterial communities in response to WAF and WAF + dispersant was examined at both DNA and RNA levels, revealing the effect of WAF and WAF + dispersant on the resident and active communities respectively. The contaminated sediment showed less taxa responsive to the addition of both WAF and WAF + dispersant than the pristine sediment, indicating the legacy effect by the presence hydrocarbon-degrading and dispersant-resistant taxa inhabiting the contaminated sediment.
Collapse
Affiliation(s)
- Tamer Hafez
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
| | | | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France.
| |
Collapse
|
10
|
Liau P, Kim C, Saxton MA, Malkin SY. Microbial succession in a marine sediment: Inferring interspecific microbial interactions with marine cable bacteria. Environ Microbiol 2022; 24:6348-6364. [PMID: 36178156 PMCID: PMC10092204 DOI: 10.1111/1462-2920.16230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023]
Abstract
Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre-scale distances via long-distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate-reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur-oxidizing Gammaproteobacteria (Thiogranum, Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism.
Collapse
Affiliation(s)
- Pinky Liau
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Carol Kim
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Matthew A Saxton
- Department of Biological Sciences, Miami University, Middletown, Ohio, USA
| | - Sairah Y Malkin
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| |
Collapse
|
11
|
Gao H, Wang C, Chen J, Wang P, Zhang J, Zhang B, Wang R, Wu C. Enhancement effects of decabromodiphenyl ether on microbial sulfate reduction in eutrophic lake sediments: A study on sulfate-reducing bacteria using dsrA and dsrB amplicon sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157073. [PMID: 35780888 DOI: 10.1016/j.scitotenv.2022.157073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Although sulfate (SO42-) reduction by sulfate-reducing bacteria (SRB) is an important sulfur cycling processes, little is known about how the persistent organic pollutants affect the SO42- reduction process in the eutrophic lake sediments. Here, we carried out a 120-day microcosm experiment to explore the effects of decabromodiphenyl ether (BDE-209) on SO42- reduction mediated by SRB in sediment collected from Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination significantly enhanced the activity of dissimilatory sulfite reductase (DSR) (r = 0.83), which led to an increased concentration of sulfide produced by SO42- reduction. This stimulatory effect of BDE-209 on DSR activity was closely related to variations in the dsrA- and dsrB-type SRB communities. The abundances and diversities of the dsrA- and dsrB-containing SRB increased and their community composition varied in response to BDE-209 contamination. The gene copies (r = 0.72), Chao 1 (r = 0.50), Shannon (r = 0.55), and Simpson (r = 0.70) indices of dsrB-containing SRB was positively correlated with BDE-209 contamination. Co-occurrence network analysis revealed that network complexity, connectivity, and the interspecific cooperative relationship in SRB were strengthened by BDE-209 contamination. The keystone species identified in the SRB community mainly belonged to the genera Candidatus Sulfopaludibacter for the dsrA-containing SRB and Desulfatiglans for the dsrB-containing SRB, and their relative abundances were positively correlated with DSR activity in the sediment. The relative abundance of the keystone species and SRB diversity were important microbial factors directly contributing to the variations in DSR activity based on structural equation modeling analysis. Notably, the results of abundance, community structure, and interspecific relationships showed that the dsrB-containing SRB may be more sensitive to the BDE-209 contamination than the dsrA-containing SRB. These results will help us understand the effects of BDE-209 on microbial sulfate reduction in eutrophic lakes.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Cheng Wu
- Kunming Engineering Corporation Limited, Power China, 115 People's East Road, Kunming 650051, PR China
| |
Collapse
|
12
|
Taktarova YV, Shirinkina LI, Budennaya AS, Gladchenko MA, Kotova IB. Biodegradation of Azo Dye Methyl Red by Methanogenic Microbial Communities Isolated from Volga River Sediments. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Chen SC, Ji J, Popp D, Jaekel U, Richnow HH, Sievert SM, Musat F. Genome and proteome analyses show the gaseous alkane degrader Desulfosarcina sp. strain BuS5 as an extreme metabolic specialist. Environ Microbiol 2022; 24:1964-1976. [PMID: 35257474 DOI: 10.1111/1462-2920.15956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The metabolic potential of the sulfate-reducing bacterium Desulfosarcina sp. strain BuS5, currently the only pure culture able to oxidize the volatile alkanes propane and butane without oxygen, was investigated via genomics, proteomics and physiology assays. Complete genome sequencing revealed that strain BuS5 encodes a single alkyl-succinate synthase, an enzyme which apparently initiates oxidation of both propane and butane. The formed alkyl-succinates are oxidized to CO2 via beta oxidation and the oxidative Wood-Ljungdahl pathways as shown by proteogenomics analyses. Strain BuS5 conserves energy via the canonical sulfate reduction pathway and electron bifurcation. An ability to utilize long-chain fatty acids, mannose and oligopeptides, suggested by automated annotation pipelines, was not supported by physiology assays and in-depth analyses of the corresponding genetic systems. Consistently, comparative genomics revealed a streamlined BuS5 genome with a remarkable paucity of catabolic modules. These results establish strain BuS5 as an exceptional metabolic specialist, able to grow only with propane and butane, for which we propose the name Desulfosarcina aeriophaga BuS5. This highly restrictive lifestyle, most likely the result of habitat-driven evolutionary gene loss, may provide D. aeriophaga BuS5 a competitive edge in sediments impacted by natural gas seeps. Etymology: Desulfosarcina aeriophaga, aério (Greek): gas; phágos (Greek): eater; D. aeriophaga: a gas eating or gas feeding Desulfosarcina.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jiaheng Ji
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Ranchou-Peyruse M, Guignard M, Casteran F, Abadie M, Defois C, Peyret P, Dequidt D, Caumette G, Chiquet P, Cézac P, Ranchou-Peyruse A. Microbial Diversity Under the Influence of Natural Gas Storage in a Deep Aquifer. Front Microbiol 2021; 12:688929. [PMID: 34721313 PMCID: PMC8549729 DOI: 10.3389/fmicb.2021.688929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Marion Guignard
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Franck Casteran
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Maïder Abadie
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - David Dequidt
- STORENGY – Geosciences Department, Bois-Colombes, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Chiquet
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Cézac
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Anthony Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| |
Collapse
|
15
|
Diversity and abundance of diazotrophic communities of seagrass Halophila ovalis based on genomic and transcript level in Daya Bay, South China Sea. Arch Microbiol 2021; 203:5577-5589. [PMID: 34436633 DOI: 10.1007/s00203-021-02544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Seagrass ecosystems are among the most productive marine ecosystems, and diazotrophic communities play a crucial role in sustaining the productivity and stability of such ecosystems by introducing fixed nitrogen. However, information concerning both total and active diazotrophic groups existing in different compartments of seagrass is lacking. This study comprehensively investigated the diversity, structure, and abundance of diazotrophic communities in different parts of the seagrass Halophila ovalis at the DNA and RNA level from clone libraries and real-time quantitative PCR. Our results indicated that nearly one-third of existing nitrogen-fixing bacteria were active, and their abundance might be controlled by nitrogen to phosphorus ratio (N:P). Deltaproteobacteria and Gammaproteobacteria were dominant groups among the total and active diazotrophic communities in all samples. These two groups accounted for 82.21% and 70.96% at the DNA and RNA levels, respectively. The genus Pseudomonas and sulfate-reducing bacteria (genera: Desulfosarcina, Desulfobulbus, Desulfocapsa, and Desulfopila) constituted the significant fraction of nitrogen-fixing bacteria in the seagrass ecosystem, playing an additional role in denitrification and sulfate reduction, respectively. Moreover, the abundance of the nitrogenase gene, nifH, was highest in seawater and lowest in rhizosphere sediments from all samples. This study highlighted the role of diazotropic communities in the subtropical seagrass ecosystem.
Collapse
|
16
|
16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS One 2021; 16:e0248485. [PMID: 33755699 PMCID: PMC7987175 DOI: 10.1371/journal.pone.0248485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species–environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.
Collapse
|
17
|
Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972-6016. [DOI: 10.1099/ijsem.0.004213] [Citation(s) in RCA: 696] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class
Deltaproteobacteria
comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum
Proteobacteria
, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class
Deltaproteobacteria
encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the
Oligoflexia
. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes
Deltaproteobacteria
and
Oligoflexia
in the phylum
Proteobacteria
. Instead, the great majority of currently recognized members of the class
Deltaproteobacteria
are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class
Oligoflexia
represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum
Thermodesulfobacteria
, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the
Thermodesulfobacteria
rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.
Collapse
Affiliation(s)
- David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Maria Chuvochina
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claus Pelikan
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Alexander Loy
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Jan Kuever
- Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
18
|
Watanabe M, Higashioka Y, Kojima H, Fukui M. Proposal of Desulfosarcina ovata subsp. sediminis subsp. nov., a novel toluene-degrading sulfate-reducing bacterium isolated from tidal flat sediment of Tokyo Bay. Syst Appl Microbiol 2020; 43:126109. [PMID: 32847784 DOI: 10.1016/j.syapm.2020.126109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
Strain 28bB2TT is a sulfate-reducing bacterium isolated in a previous study, obtained from a p-xylene-degrading enrichment culture. Physiological, phylogenetic and genomic characterizations of strain 28bB2TT were performed to establish the taxonomic status of the strain. Cells of strain 28bB2TT were short oval-shaped (0.8-1.2×1.2-2.7μm), motile, and Gram-negative. For growth, the optimum pH was pH 6.5-7.0 and the optimum temperature was 28-32°C. Strain 28bB2TT oxidized toluene but could not utilize p-xylene. Sulfate and thiosulfate were used as electron acceptors. The G+C content of the genomic DNA was 53.8mol%. The genome consisted of an approximately 8.3 Mb of chromosome and two extrachromosomal elements. On the basis of 16S rRNA gene analysis, strain 28bB2TT was revealed to belong to the genus Desulfosarcina, with high sequence identities to Desulfosarcina ovata oXyS1T (99.5%) and Desulfosarcina cetonica DSM 7267T (98.7%). Results of Average Nucleotide Identity (ANI) calculation and digital DNA-DNA hybridization (dDDH) analysis showed that the strain 28bB2TT should be classified as a subspecies under D. ovata. Based on physiological and phylogenetic data, strain 28bB2TT (=NBRC 106234 =DSM 23484) is proposed as the type strain of a novel species in genus Desulfosarcina, Desulfosarcina ovata subsp. sediminis subsp. nov.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan; Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Yuriko Higashioka
- National Institute of Technology, Kochi College, 200-1 Otsu, Monobe, Nankoku-city, Kochi 783-8508, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
19
|
Luo Y, Zhou M, Zhao Q, Wang F, Gao J, Sheng H, An L. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 2020; 112:3648-3657. [PMID: 32334112 DOI: 10.1016/j.ygeno.2020.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023]
Abstract
Sphingomonas sp. Cra20 is a rhizobacteria isolated from the root surface of Leontopodium leontopodioides in the Tianshan Mountains of China and was found to influence root system architecture. We analyzed its ability for plant-growth promotion and the molecular mechanism involved by combining the physiological and genome information. The results indicated that the bacterium enhanced the drought resistance of Arabidopsis thaliana and promoted growth mainly through the strain-released volatile organic compounds. The genome consisted of one circular chromosome and one circular plasmid, containing a series of genes related to the plant-growth promotion. Furthermore, multiple copies of cold-associated genes, general stress response genes, oxidative stress genes and DNA repair mechanisms supported its survivability in extreme environments. In addition, the strain had the ability to degrade xylene and 2, 4-D via a variety of monooxygenases and dioxygenases. This provides further information and will promote the application of Cra20 as a biofertilizer in agriculture.
Collapse
Affiliation(s)
- Yang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangli Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; The College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|