1
|
Huang Z, Yu K, Lan R, Glenn Morris J, Xiao Y, Ye J, Zhang L, Luo L, Gao H, Bai X, Wang D. Vibrio metschnikovii as an emergent pathogen: analyses of phylogeny and O-antigen and identification of possible virulence characteristics. Emerg Microbes Infect 2023; 12:2252522. [PMID: 37616379 PMCID: PMC10484048 DOI: 10.1080/22221751.2023.2252522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Vibrio metschnikovii is an emergent pathogen that causes human infections which may be fatal. However, the phylogenetic characteristics and pathogenicity determinants of V. metschnikovii are poorly understood. Here, the whole-genome features of 103 V. metschnikovii strains isolated from different sources are described. On phylogenetic analysis V. metschnikovii populations could be divided into two major lineages, defined as lineage 1 (L1) and 2 (L2), of which L1 was more likely to be associated with human activity. Meanwhile, we defined 29 V. metschnikovii O-genotypes (VMOg, named VMOg1-VMOg29) by analysis of the O-antigen biosynthesis gene clusters (O-AGCs). Most VMOgs (VMOg1 to VMOg28) were assembled by the Wzx/Wzy pathway, while only VMOg29 used the ABC transporter pathway. Based on the sequence variation of the wzx and wzt genes, an in silico O-genotyping system for V. metschnikovii was developed. Furthermore, nineteen virulence-associated factors involving 161 genes were identified within the V. metschnikovii genomes, including genes encoding motility, adherence, toxins, and secretion systems. In particular, V. metschnikovii was found to promote a high level of cytotoxicity through the synergistic action of the lateral flagella and T6SS. The lateral flagellar-associated flhA gene played an important role in the adhesion and colonization of V. metschnikovii during the early stages of infection. Overall, this study provides an enhanced understanding of the genomic evolution, O-AGCs diversity, and potential pathogenic features of V. metschnikovii.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
- Hangzhou Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Yue Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, People’s Republic of China
| | - Longze Luo
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, People’s Republic of China
| | - He Gao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Xuemei Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing, People’s Republic of China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Ren J, Cheng X, Ma H, Ma X. Characteristics of a novel heterotrophic nitrification and aerobic denitrification bacterium and its bioaugmentation performance in a membrane bioreactor. BIORESOURCE TECHNOLOGY 2021; 342:125908. [PMID: 34534943 DOI: 10.1016/j.biortech.2021.125908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
A novel bacteria with heterotrophic nitrification and aerobic denitrification ability was obtained from a membrane bioreactor (MBR) and identified as Acinetobacter sp. TSH1. The nitrogen removal characteristics, nitrogen balance analysis, kinetic characteristics, and enhanced biological treatment in MBR of the novel isolated strain TSH1 were determined. Results showed that strain TSH1 could remove approximately 96.6% of NH4+-N, 82.9% of NO2--N and 98.7% of NO3--N in 24 h, and the corresponding maximum removal rates were 3.64 mg-N/(L·h), 1.77 mg-N/(L·h) and 3.94 mg-N/(L·h). The nitrogen balance analysis indicated that most of NH4+-N (62.6%) and NO3--N (71.9%) were transformed to gaseous nitrogen. The kinetic experiments showed that strain TSH1 had a high Km of 151.64 mg-NH4+-N/L and 203.25 mg-NO3--N/L. The enhanced biological treatment of synthetic wastewater in MBR showed that the strain TSH1 can significantly improve the nitrogen removal efficiency.
Collapse
Affiliation(s)
- Jilong Ren
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China
| | - Xuewen Cheng
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Hongjing Ma
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
3
|
Wu J, Qu W, Lai Q, Pei S, Zhang T, Zhuang Y, Chan Z, Zeng R. Vibrio ziniensis sp. nov., isolated from mangrove sediments. Int J Syst Evol Microbiol 2021; 71. [PMID: 33887169 DOI: 10.1099/ijsem.0.004777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, catalase- and oxidase-positive, facultatively anaerobic and rod-shaped motile bacterial strain, designated as ZWAL4003T, was isolated from mangrove sediments of the Zini Mangrove Forest, Zhangzhou City, PR China. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that ZWAL4003T was grouped into a separated branch with Vibrio plantisponsor MSSRF60T (97.38% nucleotide sequence identity) and Vibrio diazotrophicus NBRC 103148T (97.27%). The major cellular fatty acids were C14 : 0 (12.6%), C16 : 0 (17.6%), and summed feature 3 (C16 : 1ω6c /C16 : 1 ω7c, 45.6%). Its genome had a length of 4650556 bp with 42.8% DNA G+C content, and contained genes involved in the biosynthesis of bacteriocin, β-lactone, resorcinol, N-acyl amino acid, and arylpolyene. The in silico DNA-DNA hybridization and average nucleotide identity values for whole-genome sequence comparisons between ZWAL4003T and V. plantisponsor LMG 24470T were clearly below the thresholds used for the delineation of a novel species. The morphological and chemotaxonomic characteristics and the genotypic data of ZWAL4003T indicated that it represented a novel species of the genus Vibrio. Its proposed name is Vibrio ziniensis sp. nov., and the type strain is ZWAL4003T (=KCTC 72971T=MCCC 1A17474T).
Collapse
Affiliation(s)
- Jie Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, PR China
| | - Qiliang Lai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Shengxiang Pei
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Tianyou Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yan Zhuang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Zhuhua Chan
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| |
Collapse
|
4
|
Zampieri A, Carraro L, Cardazzo B, Milan M, Babbucci M, Smits M, Boffo L, Fasolato L. Depuration processes affect the Vibrio community in the microbiota of the Manila clam, Ruditapes philippinarum. Environ Microbiol 2020; 22:4456-4472. [PMID: 32783350 DOI: 10.1111/1462-2920.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
As filter-feeders, bivalve molluscs accumulate Vibrio into edible tissues. Consequently, an accurate assessment of depuration procedures and the characterization of the persistent Vibrio community in depurated shellfish represent a key issue to guarantee food safety in shellfish products. The present study investigated changes in the natural Vibrio community composition of the Ruditapes philippinarum microbiota with specific focus on human pathogenic species. For this purpose, the study proposed a MLSA-NGS approach (rRNA 16S, recA and pyrH) for the detection and identification of Vibrio species. Clam microbiota were analysed before and after depuration procedures performed in four depuration plants, using culture-dependent and independent approaches. Microbiological counts and NGS data revealed differences in terms of both contamination load and Vibrio community between depuration plants. The novel MLSA-NGS approach allowed for a clear definition of the Vibrio species specific to each depuration plant. Specifically, depurated clam microbiota showed presence of human pathogenic species. Ozone treatments and the density of clams in the depuration tank probably influenced the level of contamination and the Vibrio community composition. The composition of Vibrio community specific to each plant should be carefully evaluated during the risk assessment to guarantee a food-safe shellfish-product for the consumer.
Collapse
Affiliation(s)
- Angela Zampieri
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| | | | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
| |
Collapse
|
5
|
Håkonsholm F, Lunestad BT, Aguirre Sánchez JR, Martinez‐Urtaza J, Marathe NP, Svanevik CS. Vibrios from the Norwegian marine environment: Characterization of associated antibiotic resistance and virulence genes. Microbiologyopen 2020; 9:e1093. [PMID: 32558371 PMCID: PMC7520990 DOI: 10.1002/mbo3.1093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
A total of 116 Vibrio isolates comprising V. alginolyticus (n = 53), V. metschnikovii (n = 38), V. anguillarum (n = 21), V. antiquarius (n = 2), and V. fujianensis (n = 2) were obtained from seawater, fish, or bivalve molluscs from temperate Oceanic and Polar Oceanic area around Norway. Antibiotic sensitivity testing revealed resistance or reduced susceptibility to ampicillin (74%), oxolinic acid (33%), imipenem (21%), aztreonam (19%), and tobramycin (17%). Whole-genome sequence analysis of eighteen drug-resistant isolates revealed the presence of genes like β-lactamases, chloramphenicol-acetyltransferases, and genes conferring tetracycline and quinolone resistance. The strains also carried virulence genes like hlyA, tlh, rtxA to D and aceA, E and F. The genes for cholerae toxin (ctx), thermostable direct hemolysin (tdh), or zonula occludens toxin (zot) were not detected in any of the isolates. The present study shows low prevalence of multidrug resistance and absence of virulence genes of high global concern among environmental vibrios in Norway. However, in the light of climate change, and projected rising sea surface temperatures, even in the cold temperate areas, there is a need for frequent monitoring of resistance and virulence in vibrios to be prepared for future public health challenges.
Collapse
Affiliation(s)
| | | | | | - Jaime Martinez‐Urtaza
- Department of Genetics and MicrobiologyUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | | | | |
Collapse
|
6
|
Huang Z, Yu K, Fang Y, Dai H, Cai H, Li Z, Kan B, Wei Q, Wang D. Comparative Genomics and Transcriptomics Analyses Reveal a Unique Environmental Adaptability of Vibrio fujianensis. Microorganisms 2020; 8:microorganisms8040555. [PMID: 32294952 PMCID: PMC7232310 DOI: 10.3390/microorganisms8040555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Vibrio is ubiquitous in marine environments and uses numerous evolutionary characteristics and survival strategies in order to occupy its niche. Here, a newly identified species, Vibrio fujianensis, was deeply explored to reveal a unique environmental adaptability. V. fujianensis type strain FJ201301T shared 817 core genes with the Vibrio species in the population genomic analysis, but possessed unique genes of its own. In addition, V. fujianensis FJ201301T was predicated to carry 106 virulence-related factors, several of which were mostly found in other pathogenic Vibrio species. Moreover, a comparative transcriptome analysis between the low-salt (1% NaCl) and high-salt (8% NaCl) condition was conducted to identify the genes involved in salt tolerance. A total of 913 unigenes were found to be differentially expressed. In a high-salt condition, 577 genes were significantly upregulated, whereas 336 unigenes were significantly downregulated. Notably, differentially expressed genes have a significant association with ribosome structural component and ribosome metabolism, which may play a role in salt tolerance. Transcriptional changes in ribosome genes indicate that V. fujianensis may have gained a predominant advantage in order to adapt to the changing environment. In conclusion, to survive in adversity, V. fujianensis has enhanced its environmental adaptability and developed various strategies to fill its niche.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Yujie Fang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Hang Dai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Hongyan Cai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
| | - Zhenpeng Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
| | - Qiang Wei
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Office of Laboratory Management, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China; (Z.H.); (K.Y.); (H.D.); (H.C.); (Z.L.); (B.K.)
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, China
- Correspondence: (Q.W.); (D.W.)
| |
Collapse
|