1
|
Rudra B, Gupta RS. Phylogenomics studies and molecular markers reliably demarcate genus Pseudomonas sensu stricto and twelve other Pseudomonadaceae species clades representing novel and emended genera. Front Microbiol 2024; 14:1273665. [PMID: 38249459 PMCID: PMC10797017 DOI: 10.3389/fmicb.2023.1273665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
Genus Pseudomonas is a large assemblage of diverse microorganisms, not sharing a common evolutionary history. To clarify their evolutionary relationships and classification, we have conducted comprehensive phylogenomic and comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic trees, Pseudomonas species formed 12 main clusters, apart from the "Aeruginosa clade" containing its type species, P. aeruginosa. In parallel, our detailed analyses on protein sequences from Pseudomonadaceae genomes have identified 98 novel conserved signature indels (CSIs), which are uniquely shared by the species from different observed clades/groups. Six CSIs, which are exclusively shared by species from the "Aeruginosa clade," provide reliable demarcation of this clade corresponding to the genus Pseudomonas sensu stricto in molecular terms. The remaining 92 identified CSIs are specific for nine other Pseudomonas species clades and the genera Azomonas and Azotobacter which branch in between them. The identified CSIs provide strong independent evidence of the genetic cohesiveness of these species clades and offer reliable means for their demarcation/circumscription. Based on the robust phylogenetic and molecular evidence presented here supporting the distinctness of the observed Pseudomonas species clades, we are proposing the transfer of species from the following clades into the indicated novel genera: Alcaligenes clade - Aquipseudomonas gen. nov.; Fluvialis clade - Caenipseudomonas gen. nov.; Linyingensis clade - Geopseudomonas gen. nov.; Oleovorans clade - Ectopseudomonas gen. nov.; Resinovorans clade - Metapseudomonas gen. nov.; Straminea clade - Phytopseudomonas gen. nov.; and Thermotolerans clade - Zestomonas gen. nov. In addition, descriptions of the genera Azomonas, Azotobacter, Chryseomonas, Serpens, and Stutzerimonas are emended to include information for the CSIs specific for them. The results presented here should aid in the development of a more reliable classification scheme for Pseudomonas species.
Collapse
Affiliation(s)
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Maucourt F, Doumèche B, Chapulliot D, Vallon L, Nazaret S, Fraissinet-Tachet L. Polychlorinated Biphenyl Transformation, Peroxidase and Oxidase Activities of Fungi and Bacteria Isolated from a Historically Contaminated Site. Microorganisms 2023; 11:1887. [PMID: 37630447 PMCID: PMC10457763 DOI: 10.3390/microorganisms11081887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Causing major health and ecological disturbances, polychlorinated biphenyls (PCBs) are persistent organic pollutants still recovered all over the world. Microbial PCB biotransformation is a promising technique for depollution, but the involved molecular mechanisms remain misunderstood. Ligninolytic enzymes are suspected to be involved in many PCB transformations, but their assessments remain scarce. To further inventory the capabilities of microbes to transform PCBs through their ligninolytic enzymes, we investigated the role of oxidase and peroxidase among a set of microorganisms isolated from a historically PCB-contaminated site. Among 29 isolated fungi and 17 bacteria, this work reports for the first time the PCB-transforming capabilities from fungi affiliated to Didymella, Dothiora, Ilyonectria, Naganishia, Rhodoturula, Solicoccozyma, Thelebolus and Truncatella genera and bacteria affiliated to Peribacillus frigotolerans, Peribacillus muralis, Bacillus mycoides, Bacillus cereus, Bacillus toyonensis, Pseudarthrobacter sp., Pseudomonas chlororaphis, Erwinia aphidicola and Chryseobacterium defluvii. In the same way, this is the first report of fungal isolates affiliated to the Dothiora maculans specie and Cladosporium genus that displayed oxidase (putatively laccase) and peroxidase activity, respectively, enhanced in the presence of PCBs (more than 4-fold and 20-fold, respectively, compared to controls). Based on these results, the observed activities are suspected to be involved in PCB transformation.
Collapse
Affiliation(s)
- Flavien Maucourt
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
- ENVISOL, 2-4 Rue Hector Berlioz, F-38110 La Tour du Pin, France
| | - Bastien Doumèche
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS 5246 ICBMS, F-69622 Villeurbanne, France
| | - David Chapulliot
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Laurent Vallon
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Sylvie Nazaret
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Laurence Fraissinet-Tachet
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
3
|
Fujihara H, Hirose J, Suenaga H. Evolution of genetic architecture and gene regulation in biphenyl/PCB-degrading bacteria. Front Microbiol 2023; 14:1168246. [PMID: 37350784 PMCID: PMC10282184 DOI: 10.3389/fmicb.2023.1168246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
A variety of bacteria in the environment can utilize xenobiotic compounds as a source of carbon and energy. The bacterial strains degrading xenobiotics are suitable models to investigate the adaptation and evolutionary processes of bacteria because they appear to have emerged relatively soon after the release of these compounds into the natural environment. Analyses of bacterial genome sequences indicate that horizontal gene transfer (HGT) is the most important contributor to the bacterial evolution of genetic architecture. Further, host bacteria that can use energy effectively by controlling the expression of organized gene clusters involved in xenobiotic degradation will have a survival advantage in harsh xenobiotic-rich environments. In this review, we summarize the current understanding of evolutionary mechanisms operative in bacteria, with a focus on biphenyl/PCB-degrading bacteria. We then discuss metagenomic approaches that are useful for such investigation.
Collapse
Affiliation(s)
- Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu, Japan
| | - Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
4
|
Sawada H, Takeuchi K, Someya N, Morohoshi T, Satou M. Pseudomonas solani sp. nov. isolated from the rhizosphere of eggplant in Japan. Int J Syst Evol Microbiol 2023; 73. [PMID: 37347683 DOI: 10.1099/ijsem.0.005942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
The search for bacteria that can be used as biocontrol agents to control crop diseases yielded a promising candidate, Sm006T, which was isolated from the rhizosphere of eggplant (Solanum melongena) growing in a field in Aichi Prefecture, Japan, in 2006. The cells were Gram-stain-negative, aerobic, non-spore-forming, rod-shaped and motile with one polar flagellum. The results of homology searches and phylogenetic analyses based on the 16S rRNA gene sequence indicated that Sm006T represents a member of the genus Pseudomonas. The genomic DNA G+C content was 66.3 mol% and the major cellular fatty acids (more than 5 % of the total fatty acids) were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0. Phylogenetic analyses using the rpoD gene sequence and phylogenomic analysis of the whole genome sequence revealed that Sm006T represents a member of the Pseudomonas resinovorans group; however, its phylogenetic position does not match that of any known species of the genus Pseudomonas. The average nucleotide identity and digital DNA-DNA hybridisation values between the strain and closely related species were lower than the thresholds for prokaryotic species delineation (95-96 and 70 %, respectively), with the highest values observed for Pseudomonas tohonis TUM18999T (92.05 and 46.3 %, respectively). Phenotypic characteristics, cellular fatty acid composition and possession of 2,4-diacetylphloroglucinol biosynthetic gene cluster could be used to differentiate the strain from its closest relatives. The phenotypic, chemotaxonomic and genotypic data obtained during this study indicated that Sm006T represents a novel species of the genus Pseudomonas, for which we propose the name Pseudomonas solani sp. nov., with Sm006T (= MAFF 212523T = ICMP 24689T) as the type strain.
Collapse
Affiliation(s)
- Hiroyuki Sawada
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kasumi Takeuchi
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Nobutaka Someya
- Institute for Plant Protection, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Mamoru Satou
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
5
|
Niu S, Gong W, Li Z, Zhang K, Wang G, Yu E, Xia Y, Tian J, Li H, Ni J, Xie J. Complete genome analysis of Pseudomonas furukawaii ZS1 isolated from grass carp ( Ctenopharyngodon idellus) culture water. Genome 2023; 66:11-20. [PMID: 36395476 DOI: 10.1139/gen-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| |
Collapse
|
6
|
Pseudomonas veronii strain 7-41 degrading medium-chain n-alkanes and polycyclic aromatic hydrocarbons. Sci Rep 2022; 12:20527. [PMID: 36443410 PMCID: PMC9705281 DOI: 10.1038/s41598-022-25191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Pollution of the environment by crude oil and oil products (represented by various types of compounds, mainly aliphatic, mono- and polyaromatic hydrocarbons) poses a global problem. The strain Pseudomonas veronii 7-41 can grow on medium-chain n-alkanes (C8-C12) and polycyclic aromatic hydrocarbons such as naphthalene. We performed a genetic analysis and physiological/biochemical characterization of strain 7-41 cultivated in a mineral medium with decane, naphthalene or a mixture of the hydrocarbons. The genes responsible for the degradation of alkanes and PAHs are on the IncP-7 conjugative plasmid and are organized into the alk and nah operons typical of pseudomonads. A natural plasmid carrying functional operons for the degradation of two different classes of hydrocarbons was first described. In monosubstrate systems, 28.4% and 68.8% of decane and naphthalene, respectively, were biodegraded by the late stationary growth phase. In a bisubstrate system, these parameters were 25.4% and 20.8% by the end of the exponential growth phase. Then the biodegradation stopped, and the bacterial culture started dying due to the accumulation of salicylate (naphthalene-degradation metabolite), which is toxic in high concentrations. The activity of the salicylate oxidation enzymes was below the detection limit. These results indicate that the presence of decane and a high concentration of salicylate lead to impairment of hydrocarbon degradation by the strain.
Collapse
|
7
|
de Morais Farias J, Krepsky N. Bacterial degradation of bisphenol analogues: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76543-76564. [PMID: 36166118 DOI: 10.1007/s11356-022-23035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is one of the most produced synthetic monomers in the world and is widespread in the environment. BPA was replaced by bisphenol analogues (BP) because of its adverse effects on life. Bacteria can degrade BPA and other bisphenol analogues (BP), diminishing their environmental concentrations. This study aimed to summarize the knowledge and contribute to future studies. In this review, we surveyed papers on bacterial degradation of twelve different bisphenol analogues published between 1987 and June 2022. A total of 102 original papers from PubMed and Google Scholar were selected for this review. Most of the studies (94.1%, n = 96) on bacterial degradation of bisphenol analogues focused on BPA, and then on bisphenol F (BPF), and bisphenol S (BPS). The number of studies on bacterial degradation of bisphenol analogues increased more than six times from 2000 (n = 2) to 2021 (n = 13). Indigenous microorganisms and the genera Sphingomonas, Sphingobium, and Cupriavidus could degrade several BP. However, few studies focussed on Cupriavidus. The acknowledgement of various aspects of BP bacterial biodegradation is vital for choosing the most suitable microorganisms for the bioremediation of a single BP or a mixture of BP.
Collapse
Affiliation(s)
- Julia de Morais Farias
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil
| | - Natascha Krepsky
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil.
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
- Institute of Biosciences (IBIO), Graduate Program in Ecotourism and Conservation, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Sandhu M, Paul AT, Proćków J, de la Lastra JMP, Jha PN. PCB-77 biodegradation potential of biosurfactant producing bacterial isolates recovered from contaminated soil. Front Microbiol 2022; 13:952374. [PMID: 36225351 PMCID: PMC9549355 DOI: 10.3389/fmicb.2022.952374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely distributed in the environment and possess deleterious health effects. The main objective of the study was to obtain bacterial isolates from PCB-contaminated soil for enhanced biodegradation of PCB-77. Selective enrichment resulted in the isolation of 33 strains of PCB-contaminated soil nearby Bhilai steel plant, Chhattisgarh, India. Based on the prominent growth using biphenyl as the sole carbon source and the confirmation of its degradation by GC-MS/MS analysis, four isolates were selected for further study. The isolates identified by 16S rRNA gene sequencing were Pseudomonas aeruginosa MAPB-2, Pseudomonas plecoglossicida MAPB-6, Brucella anthropi MAPB-9, and Priestia megaterium MAPB-27. The isolate MAPB-9 showed a degradation of 66.15% biphenyl, while MAPB-2, MAPB-6, and MAPB-27 showed a degradation of 62.06, 57.02, and 56.55%, respectively in 48 h. Additionally, the degradation ability of these strains was enhanced with addition of co-metabolite glucose (0.2%) in the culture medium. Addition of glucose showed 100% degradation of biphenyl by MAPB-9, in 48 h, while MAPB-6, MAPB-2, and MAPB-27 showed 97.1, 67.5, and 53.3% degradation, respectively as analyzed by GC-MS/MS. Furthermore, in the presence of inducer, PCB-77 was found to be 59.89, 30.49, 27.19, and 4.43% degraded by MAPB-6, MAPB-9, MAPB-2, and MAPB-27, respectively in 7 d. The production of biosurfactants that aid in biodegradation process were observed in all the isolates. This was confirmed by ATR-FTIR analysis that showed the presence of major functional groups (CH2, CH3, CH, = CH2, C–O–C, C-O) of the biosurfactant. The biosurfactants were further identified by HPTLC and GC-MS/MS analysis. Present study is the first to report PCB-77 degradation potential of Pseudomonas aeruginosa, B. anthropi, Pseudomonas plecoglossicida, and Priestia megaterium. Similarly, this is the first report on Pseudomonas plecoglossicida and Priestia megaterium for PCB biodegradation. Our results suggest that the above isolates can be used for the biodegradation of biphenyl and PCB-77 in PCB-contaminated soil.
Collapse
Affiliation(s)
- Monika Sandhu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Atish T. Paul
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - José Manuel Pérez de la Lastra
- Biotecnología de Macromoléculas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Spain
- José Manuel Pérez de la Lastra,
| | - Prabhat N. Jha
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
- *Correspondence: Prabhat N. Jha,
| |
Collapse
|
9
|
Dhankhar R, Kawatra A, Gupta V, Mohanty A, Gulati P. In silico and in vitro analysis of arginine deiminase from Pseudomonas furukawaii as a potential anticancer enzyme. 3 Biotech 2022; 12:220. [PMID: 35971334 PMCID: PMC9374873 DOI: 10.1007/s13205-022-03292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Vatika Gupta
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
10
|
Nicklasson M, Martín-Rodríguez AJ, Thorell K, Higdon SM, Neves L, Mussagy A, Rydberg HA, Hernroth B, Svensson-Stadler L, Sjöling Å. Pseudomonas boanensis sp. nov., a bacterium isolated from river water used for household purposes in Boane District, Mozambique. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
A Gram-negative rod with a single polar flagellum was isolated from a freshwater reservoir used for household purposes in Boane District, near Maputo, Mozambique, and designated as strain DB1T. Growth was observed at 30–42 °C (optimum, 30–37 °C) and with 0.5–1.5 % NaCl. Whole-genome-, rpoD- and 16S rRNA-based phylogenies revealed this isolate to be distant from other
Pseudomonas
species with
Pseudomonas resinovorans
,
Pseudomonas furukawaii
and
Pseudomonas lalkuanensis
being the closest relatives. Phenotypic analyses of strain DB1T showed marked differences with respect to type strains
P. resinovorans
CCUG 2473T,
P. lalkuanensis
CCUG 73691T,
P. furukawaii
CCUG 75672T and Pseudomonas otiditis CCUG 55592T. Taken together, our results indicate that strain DB1T is a representative of a novel species within the genus
Pseudomonas
for which the name Pseudomonas boanensis is proposed. The type strain is DB1T (=CCUG 62977T=CECT 30359T).
Collapse
Affiliation(s)
- Matilda Nicklasson
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, Göteborg, Sweden
| | - Alberto J. Martín-Rodríguez
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, Göteborg, Sweden
| | - Shawn M. Higdon
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Aidate Mussagy
- Department of Biological Science, Faculty of Science, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Hanna A. Rydberg
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Bodil Hernroth
- The Royal Swedish Academy of Sciences, Kristineberg, Fiskebäckskil, Sweden; and Department of Biomedicine, Kristianstad University, Kristianstad, Sweden
| | - Liselott Svensson-Stadler
- Culture Collection University of Gothenburg (CCUG), Department of Infectious Diseases, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
A novel Gram-stain-negative, rod-shaped, aerobic and motile bacterium designated strain UL073T was isolated from a forest soil of an island, and subjected to taxonomic characterization. Strain UL073T grew at 10–37 °C (optimum, 30 °C), at pH 5.0–10.0 (optimum, pH 7.0) and in the presence of 0–3 % NaCl (optimum, 0 %), respectively. Strain UL073T showed the highest sequence similarity to
Pseudomonas lalkuanensis
PE08T based on 16S rRNA gene analysis with a sequence similarity of 98.08 %, which was well below the suggested cutoff for species distinction. The 16S rRNA gene tree as well as the multilocus sequence analysis and genome-based trees indicated the independent taxonomic position of strain UL073T, and the orthologous average nucleotide identity and in silico DNA–DNA hybridization values between strain UL073T and related species were no higher than 84.7 and 28.3% respectively, thus confirming the distinctive taxonomic position of the strain. The chemotaxonomic properties were consistent with those of the genus, as the major fatty acids of the strain were a summed feature consisting of C18 : 1 ω7c/C18 : 1 ω6c (31.4 %), another summed feature consisting of C16 : 1 ω7c/C16 : 1 ω6c (23.1 %), and C16 : 0 (22.0 %), the major respiratory quinone was ubiquinone 9, and the major polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The genome size and DNA G+C content of strain UL073T were 4.87 Mbp and 65.9 mol%. On the basis of phenotypic and phylogenetic evidence, strain UL073T should be classified as representing a novel species of
Pseudomonas
, for which the name Pseudomonas insulae sp. nov. (type strain=UL073T=KCTC 82407T=JCM 34511T) is proposed.
Collapse
|
12
|
Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol (Praha) 2022; 67:591-604. [PMID: 35318574 DOI: 10.1007/s12223-022-00966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.
Collapse
|
13
|
Hara T, Takatsuka Y. Aerobic polychlorinated biphenyl-degrading bacteria isolated from the Tohoku region of Japan are not regionally endemic. Can J Microbiol 2022; 68:191-202. [PMID: 35020498 DOI: 10.1139/cjm-2021-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the Tohoku region of Japan, 72% of the land comprises mountain forest zones. During winter, severe climatic conditions include heavy snowfall. In such an environment, which is considered high in biodiversity, we assumed that aerobic bacteria would be diverse and would possess the ability to degrade polychlorinated biphenyls (PCBs). In this study, 78 environmental samples were collected from the Tohoku region and 56 aerobic PCB-degrading bacterial strains were isolated. They belonged to the genera Achromobacter, Rhodococcus, Pseudomonas, Stenotrophomonas, Comamonas, Pigmentiphaga, Xenophilus, Acinetobacter, and Pandoraea. Previously reported aerobic PCB-degrading bacterial strains isolated in Japan belonged to the same genera, except that the genera Acidovorax and Bacillus were not identified in the present study. In particular, the isolated Comamonas testosteroni strains YAZ2 and YU14-111 had high PCB-degrading abilities. Analysis of the sequences of the YAZ2 and YU14-111 strains showed that the gene structures of the bph operon, which encode enzymes associated with PCB degradation, were the same as those of the Acidovorax sp. KKS102 strain. Moreover, 2,3-biphenyl dioxygenase activity was responsible for the degradation characteristics of all the isolated strains. Overall, this study suggests that aerobic PCB-degrading bacteria are not specifically endemic to the Tohoku region but distributed across Japan.
Collapse
Affiliation(s)
- Tomijiro Hara
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yumiko Takatsuka
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
14
|
Yamada K, Sasaki M, Aoki K, Nagasawa T, Murakami H, Ishii M, Shibuya K, Morita T, Ishii Y, Tateda K. Pseudomonas tohonis sp. nov., isolated from the skin of a patient with burn wounds in Japan. Int J Syst Evol Microbiol 2021; 71. [PMID: 34762579 DOI: 10.1099/ijsem.0.005115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain TUM18999T was isolated from the skin of a patient with burn wounds in Japan. The strain was successfully cultured at 20-42 °C (optimum, 30-35 °C) in 1.0-4.0% NaCl (w/v) and at pH 5.5-9.5, optimum pH 5.5-8.5. The phylogenetic tree reconstructed using 16S rRNA, gyrB, rpoB and rpoD gene sequences indicated that strain TUM18999T is closely related to Pseudomonas otitidis MCC10330T. Although the partial 16S rRNA gene sequence (1412 bp) of TUM18999T exhibits high similarity to those of Pseudomonas alcaligenes NBRC 14159T (99.08 %) and Pseudomonas otitidis MCC10330T (98.51 %), multi-locus sequence analysis using 16S rRNA, gyrB, rpoB and rpoD genes reveals a clear distinction between TUM18999T and other Pseudomonas species. In addition, an average nucleotide identity >90 % was not observed in the P. aeruginosa group. Moreover, TUM18999T and P. otitidis can be distinguished based on the minimum inhibitory concentration for carbapenem. Meanwhile, the cellular fatty acids are enriched with C18 : 1 ω7c/C18 : 1 ω6c (34.35 %), C16 : 1 ω7c/C16 : 1 ω6c (24.22 %), C16 : 0 (19.79 %) and C12 : 0 (8.25 %). Based on this evidence, strain TUM18999T can be defined as representing a novel Pseudomonas species, with the proposed name Pseudomonas tohonis sp. nov. The type strain is TUM18999T (GTC 22698T=NCTC 14580T).
Collapse
Affiliation(s)
- Kageto Yamada
- Department of Clinical Laboratory, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan.,Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratory, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan.,Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Tatsuya Nagasawa
- Department of Clinical Laboratory, Juntendo University Hospital, 3-1-3, Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Hinako Murakami
- Department of Clinical Laboratory, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Mayumi Ishii
- Department of Pathology, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kazutoshi Shibuya
- Department of Pathology, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University School of Medicine, 5-21-6 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
15
|
Thorat V, Kirdat K, Tiwarekar B, DaCosta E, Debbarma P, Shouche Y, Sathe S, Goel R, Lodha T, Yadav A. Pseudomonas lalkuanensis sp. nov., isolated from a bacterial consortia of contaminated soil enriched for the remediation of e-waste. Int J Syst Evol Microbiol 2020; 70:6468-6475. [PMID: 33174829 DOI: 10.1099/ijsem.0.004559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel e-waste-degrading strain, PE08T, was isolated from contaminated soil collected from a paper mill yard in Lalkuan, Uttarakhand, India. Strain PE08T was Gram-stain-negative, rod-shaped, aerobic, oxidase-positive and catalase-positive. Optimum growth was observed at 30 °C (range, 5-40 °C), with 1-2 % NaCl (range, 0-3 %) and at pH 7 (range 6-11). The phylogeny based on 16S rRNA gene sequences delineated strain PE08T to the genus Pseudomonas and showed highest sequence similarity to Pseudomonas furukawaii KF707T (98.70 %), followed by Pseudomonas aeruginosa DSM 50071T (98.62 %) and Pseudomonas resinovorans DSM 21078T (97.93 %). The genome of strain PE08T was sequenced and had one scaffold of 6056953 bp, 99.84 % completeness and 182× coverage were obtained. The G+C content in the genome was 64.24 mol%. The DNA-DNA hybridization and average nucleotide identity values between strain PE08T and its closely related type strain, P. resinovorans DSM 21078T were below 34.8 % and 87.96 %, respectively. The phylogenetic analysis based on whole-genome sequence and concatenated GyrB and RpoB proteins revealed that strain PE08T forms a district clade in the family Pseudomonadaceae. The predominant fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 :1 ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The phenotypic, chemotaxonomic and genetic analysis, including overall genome relatedness index values, indicated that strain PE08T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas lalkuanensis sp. nov. is proposed. The type strain is PE08T (=MCC 3792=KCTC 72454=CCUG 73691).
Collapse
Affiliation(s)
- Vipool Thorat
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Kiran Kirdat
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, Maharashtra 413 102, India.,National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Bhavesh Tiwarekar
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Elaine DaCosta
- Department of Biotechnology, Fergusson College, Shivajinagar, Pune 411 004, India.,National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Prasenjit Debbarma
- Department of Microbiology College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Uttarakhand, Pantnagar 263 145, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, Maharashtra 413 102, India
| | - Reeta Goel
- Department of Microbiology College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Uttarakhand, Pantnagar 263 145, India
| | - Tushar Lodha
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
16
|
Pseudomonas mangiferae sp. nov., isolated from bark of mango tree in Thailand. Int J Syst Evol Microbiol 2019; 69:3537-3543. [DOI: 10.1099/ijsem.0.003657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Voronina AO, Egorova DO, Korsakova ES, Plotnikova EG. Diversity of the bphA1 Genes in a Microbial Community from Anthropogenically Contaminated Soil and Isolation of New Pseudomonads Degrading Biphenyl/Chlorinated Biphenyls. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Zou Y, He S, Sun Y, Zhang X, Liu Y, Cheng Q. Pseudomonas urumqiensis sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Int J Syst Evol Microbiol 2019; 69:1760-1766. [DOI: 10.1099/ijsem.0.003390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yuanyuan Zou
- 1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shanwen He
- 2Agricultural Resources and Regional Planning Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yuping Sun
- 3College of Basic Medical Science, Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaoxia Zhang
- 2Agricultural Resources and Regional Planning Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yang Liu
- 4College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Qi Cheng
- 5C4-101, Nitrogen Fixation Laboratory, Qi Institute,555 Chuangye Road, Dayun Town, Jiashan County, Jiaxing 314000, Zhejiang Province, PR China
- 1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
19
|
Hirose J, Fujihara H, Watanabe T, Kimura N, Suenaga H, Futagami T, Goto M, Suyama A, Furukawa K. Biphenyl/PCB Degrading bph Genes of Ten Bacterial Strains Isolated from Biphenyl-Contaminated Soil in Kitakyushu, Japan: Comparative and Dynamic Features as Integrative Conjugative Elements (ICEs). Genes (Basel) 2019; 10:genes10050404. [PMID: 31137913 PMCID: PMC6563109 DOI: 10.3390/genes10050404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
We sequenced the entire genomes of ten biphenyl/PCB degrading bacterial strains (KF strains) isolated from biphenyl-contaminated soil in Kitakyushu, Japan. All the strains were Gram-negative bacteria belonging to β- and γ-proteobacteria. Out of the ten strains, nine strains carried a biphenyl catabolic bph gene cluster as integrative conjugative elements (ICEs), and they were classified into four groups based on the structural features of the bph genes. Group I (five strains) possessed bph genes that were very similar to the ones in Pseudomonasfurukawaii KF707 (formerly Pseudomonas pseudoalcaligenes KF707), which is one of the best characterized biphenyl-utilizing strains. This group of strains carried salicylate catabolic sal genes that were approximately 6-kb downstream of the bph genes. Group II (two strains) possessed bph and sal genes similar to the ones in KF707, but these strains lacked the bphX region between bphC and bphD, which is involved in the downstream catabolism of biphenyl. These bph-sal clusters in groups I and II were located on an integrative conjugative element that was larger than 110 kb, and they were named ICEbph-sal. Our previous study demonstrated that the ICEbph-sal of Pseudomonas putida KF715 in group II existed both in an integrated form in the chromosome (referred to as ICEbph-salKF715 (integrated)) and in a extrachromosomal circular form (referred to as ICEbph-sal (circular)) (previously called pKF715A, 483 kb) in the stationary culture. The ICEbph-sal was transferred from KF715 into P. putida AC30 and P. putida KT2440 with high frequency, and it was maintained stably as an extrachromosomal circular form. The ICEbph-salKF715 (circular) in these transconjugants was further transferred to P. putida F39/D and then integrated into the chromosome in one or two copies. Meanwhile, group III (one strain) possessed bph genes, but not sal genes. The nucleotide sequences of the bph genes in this group were less conserved compared to the genes of the strains belonging to groups I and II. Currently, there is no evidence to indicate that the bph genes in group III are carried by a mobile element. Group IV (two strains) carried bph genes as ICEs (59–61 kb) that were similar to the genes found in Tn4371 from Cupriavidus oxalacticus A5 and ICEKKS1024677 from the Acidovorax sp. strain KKS102. Our study found that bph gene islands have integrative functions, are transferred among soil bacteria, and are diversified through modification.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan.
| | - Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| | - Takahito Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | - Hikaru Suenaga
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Masatoshi Goto
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan.
| | - Akiko Suyama
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| | - Kensuke Furukawa
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| |
Collapse
|
20
|
Wang MQ, Wang Z, Yu LN, Zhang CS, Bi J, Sun J. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil. Arch Microbiol 2019; 201:673-678. [DOI: 10.1007/s00203-019-01636-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
21
|
Fedi S, Cappelletti M, Sandri F, Turner RJ, Zannoni D. Some facts about the respiratory enzymes of Pseudomonas pseudoalcaligenes KF707 recently renamed as Pseudomonas furukawaii sp. nov., type strain KF707. Int J Syst Evol Microbiol 2018; 68:3066-3067. [PMID: 30024361 DOI: 10.1099/ijsem.0.002923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kimura and co-workers (Kimura N et al. Int J Syst Evol Microbiol 2018;68:1429-1435) recently proposed renaming the obligate aerobe Pseudomonas pseudoalcaligenes KF707 as Pseudomonas furukawiisp. nov. type strain KF707. Since the first quasi-complete genome sequence of KF707 was reported in 2012 (accession number: PRJNA83639) numerous reports on chemotaxis and function/composition of the respiratory redox chain of KF707 have been published, demonstrating that KF707 contains three cheA genes for aerobic motility, four cytochrome oxidases of c(c)aa3- and cbb3-type and one bd-type quinol oxidase. With this background in mind, it has been quite a surprise to read within Table 1 of the paper by Kimura et al. that strain KF707 is phenotypically characterized as cytochrome oxidase-negative. Further, Table 1 also reports that KF707 is β-galactosidase-positive, an affirmation that is not consistent with results documented in the current literature. In this present 'Letter to the Editor' we show that Kimura et al. have contradicted themselves and provided inaccurate information in respect to the respiratory phenotypic features of P. furukawii. Based on this, an official corrigendum is requested since the publication, as it is, blurs the credibility of the International Journal of Systematic and Evolutionary Microbiology.
Collapse
Affiliation(s)
- Stefano Fedi
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| | - Federica Sandri
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| | - Raymond J Turner
- 2Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- 1Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy
| |
Collapse
|