1
|
Vermeulen RR, van Staden ADP, Ollewagen T, van Zyl LJ, Luo Y, van der Donk WA, Dicks LMT, Smith C, Trindade M. Initial Characterization of the Viridisins' Biological Properties. ACS OMEGA 2024; 9:31832-31841. [PMID: 39072090 PMCID: PMC11270710 DOI: 10.1021/acsomega.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Viridisin A1 and A2 were previously heterologously expressed, purified, and characterized as ribosomally produced and post-translationally modified lanthipeptides. Such lanthipeptide operons are surprisingly common in Gram-negative bacteria, although their expression seems to be predominantly cryptic under laboratory conditions. However, the bioactivity and biological role of most lanthipeptide operons originating from marine-associated Pseudomonadota, such asThalassomonas viridans XOM25T, have not been described. Therefore, marine-associated Gram-negative lanthipeptide operons represent an untapped resource for novel structures, biochemistries, and bioactivities. Here, the upscaled production of viridisin A1 and A2 was performed for (methyl)lanthionine stereochemistry characterization, antibacterial, antifungal, and larval zebrafish behavioral screening. While antimicrobial activity was not observed, the VirBC modification machinery was found to install both dl- and ll-lanthionine stereoisomers. The VdsA1 and VdsA2 peptides induced sedative and stimulatory effects in zebrafish larvae, respectively, which is a bioactivity not previously reported from lanthipeptides. When combined, VdsA1 and VdsA2 counteracted the sedative and stimulatory effects observed when used individually.
Collapse
Affiliation(s)
- Ross Rayne Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Anton Du Preez van Staden
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Tracey Ollewagen
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Leonardo Joaquim van Zyl
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Carine Smith
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Marla Trindade
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| |
Collapse
|
2
|
Liu X, Chen Y, Guo Y, He S, Zhang W, Ding L. Marinicella meishanensis sp. nov., a novel Marinicella member isolated from coastal mudflat sediment of Meishan Islandin the East China Sea. Int J Syst Evol Microbiol 2024; 74. [PMID: 38787363 DOI: 10.1099/ijsem.0.006374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
A Gram-negative, rod-shaped, non-motile and strictly aerobic strain, designated NBU2979T, was isolated from a coastal mudflat located on Meishan Island in the East China Sea. Strain NBU2979T grew optimally at 32 °C, with 2.0 % NaCl (w/v) and at pH 7.0-7.5. The predominant fatty acid (>10 %) was iso-C15 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, an unidentified glycolipid, two unidentified aminophospholipids, an unidentified phospholipid and an unidentified lipid. The only respiratory quinone was ubiquinone-8. Comparative analysis of 16S rRNA gene sequences showed that strain NBU2979T exhibited highest similarity to Marinicella sediminis F2T (98.0 %), Marinicella marina S1101T (97.5 %), Marinicella litoralis KMM 3900T (96.6 %), Marinicella rhabdoformis 3539T (95.5 %), Marinicella pacifica sw153T (95.2 %) and Marinicella gelatinilytica S6413T (94.9 %). Phylogenetic analyses indicated that strain NBU2979T clustered with the genus Marinicella and was closely related to strain M. sediminis F2T. The average nucleotide identity and digital DNA-DNA hybridization values between strain NBU2979T and related species of genus Marinicella were well below the threshold limit for prokaryotic species delineation. The DNA G+C content of strain NBU2979T was 51.6 mol%. Based on its phenotypic, chemotaxonomic and genotypic data, strain NBU2979T (=KCTC 82911T=MCCC 1K06402T) is considered to be a representative of a novel species in the genus Marinicella, for which the name Marinicella meishanensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Xinyu Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Yaqin Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Yifan Guo
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang 315800, PR China
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| |
Collapse
|
3
|
Zhang J, Lian FB, Gao YZ, Du ZJ, Wang MY. Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov., isolated from coastal sediment, and genome analysis and habitat distribution of the genus Marinicella. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917552 DOI: 10.1099/ijsem.0.006130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Three Marinicella strains, X102, S1101T and S6413T, were isolated from sediment samples from different coasts of Weihai, PR China. All strains were Gram-stain-negative, rod-shaped and non-motile. The predominant fatty acids of all strains were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and the major polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strains X102 and S1101T shared 100 % 16S rRNA gene sequence similarity, and strains S1101T/X102 and S6413T had 95.4 % similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strains S1101T and X102 were 99.9 and 99.2 %, respectively. Strain S1101T had ANI values of 69.1-72.9% and dDDH values of 17.9-20.5 % to members of the genus Marinicella. Strain S6413T had ANI values of 69.1-77.5% and dDDH values of 17.6-21.5 % to members of the genus Marinicella. The results of phylogenetic and comparative genomic analysis showed that the three strains belong to two novel species in the genus Marinicella, and strains X102 and S1101T represented one novel species, and strain S6413T represented another novel species. The result of BOX-PCR and genomic analysis showed that X102 and S1101T were not the same strain. The phylogenetic analyses and genomic comparisons, combined with phylogenetic, phenotypic and chemotaxonomic features, strongly supported that the three strains should be classified as representing two novel species of the genus Marinicella, for which the names Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov. are proposed, respectively. The type strains of the two novel species are S1101T (=KCTC 92642T=MCCC 1H01359T) and S6413T (=KCTC 92641T=MCCC 1H01362T), respectively. In addition, all previously described isolates of Marinicella were isolated from marine environments, but our study showed that Marinicella is also distributed in non-/low-saline habitats (e.g. animal gut, soil and indoor surface), which broadened our perception of the environmental distribution of Marinicella.
Collapse
Affiliation(s)
- Jing Zhang
- Weihai Municipal Hospital, Weihai, 264209, PR China
- Marine College, Shandong University, Weihai, 264209, PR China
| | - Feng-Bai Lian
- Marine College, Shandong University, Weihai, 264209, PR China
| | - Yi-Zhou Gao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandon University, Weihai, 264209, PR China
| | - Ming-Yi Wang
- Weihai Municipal Hospital, Weihai, 264209, PR China
| |
Collapse
|
4
|
Delacuvellerie A, Brusselman A, Cyriaque V, Benali S, Moins S, Raquez JM, Gobert S, Wattiez R. Long-term immersion of compostable plastics in marine aquarium: Microbial biofilm evolution and polymer degradation. MARINE POLLUTION BULLETIN 2023; 189:114711. [PMID: 36807047 DOI: 10.1016/j.marpolbul.2023.114711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.
Collapse
Affiliation(s)
- Alice Delacuvellerie
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium
| | - Axelle Brusselman
- Oceanology department, UR FOCUS, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium
| | - Valentine Cyriaque
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium; Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
| | - Samira Benali
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Sébastien Moins
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Sylvie Gobert
- Oceanology department, UR FOCUS, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium; STARESO, Pointe Revellata, BP33, 20260 Corse, France
| | - Ruddy Wattiez
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium.
| |
Collapse
|
5
|
Díaz-Abad L, Bacco-Mannina N, Miguel Madeira F, Serrao EA, Regalla A, Patrício AR, Frade PR. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle ( Chelonia mydas) Gut Microbiome. Microorganisms 2022; 10:microorganisms10101988. [PMID: 36296266 PMCID: PMC9610419 DOI: 10.3390/microorganisms10101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% “amplicon sequence variants”, ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.
Collapse
Affiliation(s)
- Lucía Díaz-Abad
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- IMBRSea, International Master of Science in Marine Biological Resources, IMBRSea Universities Consortium, 9000 Ghent, Belgium
| | | | - Fernando Miguel Madeira
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ester A. Serrao
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- CIBIO/InBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Aissa Regalla
- IBAP—Instituto da Biodiversidade e das Áreas Protegidas Dr. Alfredo Simão da Silva, Bissau 1220, Guinea-Bissau
| | - Ana R. Patrício
- MARE—Marine and Environmental Sciences Centre, Ispa—Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, Cornwall, UK
| | - Pedro R. Frade
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- Natural History Museum Vienna, 1010 Vienna, Austria
- Correspondence:
| |
Collapse
|
6
|
Han Y, Wang X, Zhang Y, Huo L. Discovery and Characterization of Marinsedin, a New Class II Lanthipeptide Derived from Marine Bacterium Marinicella sediminis F2 T. ACS Chem Biol 2022; 17:785-790. [PMID: 35293716 DOI: 10.1021/acschembio.2c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial natural products provide a large number of drug leads. It is believed that abundant unexploited marine microorganisms also exhibit great potential for discovering compounds with novel chemical scaffolds and bioactivities. Lanthipeptides are a group of ribosomally synthesized and post-translationally modified peptides exhibiting a variety of biological functionalities. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and methyllanthionine. However, marine-derived lanthipeptides remain underexplored. Here we identified, heterologously expressed, and structurally characterized the unprecedented class II lanthipeptide marinsedin from the rare marine bacterium Marinicella sediminis F2T. Marinsedin consists of 19 amino acids and contains a rare 2-oxobutyryl group blocking the N-terminus of the peptide chain and two overlapping intramolecular thioether rings including an unusual 12-membered macro-thioether ring. Furthermore, we also evaluated the biological activity of marinsedin, demonstrating that it exhibits moderate cytotoxicity against HeLa cells and weak cytotoxicity against HCT-116 cell lines.
Collapse
Affiliation(s)
- Yu Han
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaotong Wang
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liujie Huo
- Helmholtz International Laboratory, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P.R.China
| |
Collapse
|
7
|
Chen X, Li J, Zhang Y, Liu W. Unraveling nitrogen removal and microbial response of marine anammox bacteria-dominated consortia to Mo(VI) addition in nitrogen-laden saline wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Awata T, Goto Y, Kuratsuka H, Aoi Y, Ozaki N, Ohashi A, Kindaichi T. Reactor performance and microbial community structure of single-stage partial nitritation anammox membrane bioreactors inoculated with Brocadia and Scalindua enrichment cultures. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Zhong YL, Sun XK, Hui JG, Teng HL, Du ZJ. Marinicella rhabdoformis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2020; 70:3528-3533. [PMID: 32392121 DOI: 10.1099/ijsem.0.004210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, facultative anaerobic bacterium, designated strain 3539T, was isolated from coastal sediment of Weihai, PR China. Optimal growth occurred at 28 °C, pH 7.5-8.0 and in the presence of 3.0 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 3539T formed a robust clade with members of the genus Marinicella and was closely related to Marinicella litoralis JCM 16154T, Marinicella sediminis F2T and Marinicella pacifica sw153T with 97.7, 96.2 and 95.4 % sequence similarity, respectively. The average amino acid identity, percentage of conserved proteins, average nucleotide identity and digital DNA-DNA hybridization values between strain 3539T and M. litoralis JCM 16154T were 64.9, 68.3, 72.8 and 18.9 %, respectively. The genomic DNA G+C content of strain 3539T was 42.0 mol%. The dominant respiratory quinone was ubiquinone-8, and the major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The polar lipids of strain 3539T consisted of phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified lipid and three unidentified phospholipids. Based on the combination of phylogenetic, phenotypic and chemotaxonomic data, strain 3539T is considered to represent a novel species within the genus Marinicella in he family Alcanivoracaceae, for which the name Marinicella rhabdoformis sp. nov. is proposed. The type strain of the new species is 3539T (=KCTC 72414T=MCCC 1H00388T).
Collapse
Affiliation(s)
- Yan-Lin Zhong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Xun-Ke Sun
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Jian-Gang Hui
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Hui-Ling Teng
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
10
|
Villemur R, Payette G, Geoffroy V, Mauffrey F, Martineau C. Dynamics of a methanol-fed marine denitrifying biofilm: 2-impact of environmental changes on the microbial community. PeerJ 2019; 7:e7467. [PMID: 31423359 PMCID: PMC6697039 DOI: 10.7717/peerj.7467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. METHODS The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. RESULTS High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0-1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. CONCLUSIONS These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | - Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | | |
Collapse
|