1
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Liu Q, Xue L, Wu K, Fan G, Bai X, Yang X, Cao L, Sun H, Song W, Pan Y, Chen S, Xiong Y, Chen H. Nanchangia anserum gen. nov., sp. nov., isolated from feces of greater white-fronted geese ( Anser albifrons). Int J Syst Evol Microbiol 2021; 71. [PMID: 34431769 DOI: 10.1099/ijsem.0.004978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two rod-shaped and Gram-stain-positive bacteria (strains C64T and C62) were isolated in 2020 from faeces of greater white-fronted geese (Anser albifrons) from Poyang Lake, PR China. Their optimal growth conditions were at 37 °C, pH 7.0 and with 0.5 % (w/v) NaCl. The two isolates showed a highest 16S rRNA gene sequence similarity to Bowdeniella nasicola DSM 19116T (92.1 %). Phylogenetic/phylogenomic analyses indicated that strains C64T and C62 clustered independently in the vicinity of the genera Varibaculum, Winkia and Mobiluncus within the family Actinomycetaceae, but could not be classified clearly as members of any of these known genera. The average amino acid identity values between our isolates and available genomes of members of the family Actinomycetaceae were around the genus threshold value (45-65 %). The major cellular fatty acids of the strains were C18 : 1ω9c and C16 : 0. The predominant polar lipids were phosphatidylinositol, phosphatidylglycerol, phosphatidylcholine, diacylglycerol, triacylglycerol and cardiolipin. The amino acid composition of peptidoglycan contained alanine, glutamic acid and glycine. The major respiratory menaquinones were MK-8(H4) and MK-9(H4). The whole cell sugars included galactose, arabinose and glucose. On the basis of the results of the 16S rRNA gene sequences comparison, whole-genome phylogenomic analysis, phenotypic and chemotaxonomic characteristics, we propose that strains C64T and C62 represent a novel species belonging to a novel genus within the family Actinomycetaceae, for which the name Nanchangia anserum gen. nov., sp. nov. is proposed. The type strain is Nanchangia anserum C64T (=CGMCC 1.18410T=GDMCC 1.1969T=KCTC 49511T=KACC 22143T).
Collapse
Affiliation(s)
- Qian Liu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, PR China
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Xue
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Kui Wu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Guoyin Fan
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lijiao Cao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wentao Song
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Yanyu Pan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Haiying Chen
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, PR China
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| |
Collapse
|
3
|
Yang C, Bai Y, Dong K, Yang J, Lai XH, Lu S, Zhang G, Cheng Y, Jin D, Zhang S, Lv X, Huang Y, Xu J. Actinomyces marmotae sp. nov. and Actinomyces procaprae sp. nov. isolated from wild animals and reclassification of Actinomyces liubingyangii and Actinomyces tangfeifanii as Boudabousia liubingyangii comb. nov. and Boudabousia tangfeifanii comb. nov., respectively. Int J Syst Evol Microbiol 2021; 71. [PMID: 33560201 DOI: 10.1099/ijsem.0.004696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four Gram-stain-positive, catalase-negative, non-spore-forming, rod-shaped bacterial strains (zg-325T, zg329, dk561T and dk752) were isolated from the respiratory tract of marmot (Marmota himalayana) and the faeces of Tibetan gazelle (Procapra picticaudata) from the Qinghai-Tibet Plateau of PR China. The results of 16S rRNA gene sequence-based phylogenetic analyses indicated that strains zg-325T and dk561T represent members of the genus Actinomyces, most similar to Actinomyces denticolens DSM 20671T and Actinomyces ruminicola B71T, respectively. The DNA G+C contents of strains zg-325T and dk561T were 71.6 and 69.3 mol%, respectively. The digital DNA-DNA hybridization values of strains zg-325T and dk561T with their most closely related species were below the 70 % threshold for species demarcation. The four strains grew best at 35 °C in air containing 5 % CO2 on brain heart infusion (BHI) agar with 5 % sheep blood. All four strains had C18:1ω9c and C16:0 as the major cellular fatty acids. MK-8 and MK-9 were the major menaquinones in zg-325T while MK-10 was predominant in dk561T. The major polar lipids included diphosphatidylglycerol and phosphatidylinositol. On the basis of several lines of evidence from phenotypic and phylogenetic analyses, zg-325T and dk561T represent novel species of the genus Actinomyces, for which the name Actinomyces marmotae sp. nov. and Actinomyces procaprae sp. nov. are proposed. The type strains are zg-325T (=GDMCC 1.1724T=JCM 34091T) and dk561T (=CGMCC 4.7566T=JCM 33484T). We also propose, on the basis of the phylogenetic results herein, the reclassification of Actinomyces liubingyangii and Actinomyces tangfeifanii as Boudabousia liubingyangii comb. nov. and Boudabousia tangfeifanii comb. nov., respectively.
Collapse
Affiliation(s)
- Caixin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Yibo Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Kui Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Xianglian Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- Institute of Public Health, Nankai University, Tianjin, PR China
| |
Collapse
|
4
|
Zhu W, Li J, Wang X, Yang J, Lu S, Lai XH, Jin D, Huang Y, Zhang S, Pu J, Zhou J, Ren Z, Huang Y, Wu X, Xu J. Actinomyces wuliandei sp. nov., Corynebacterium liangguodongii sp. nov., Corynebacterium yudongzhengii sp. nov. and Oceanobacillus zhaokaii sp. nov., isolated from faeces of Tibetan antelope in the Qinghai-Tibet plateau of China. Int J Syst Evol Microbiol 2020; 70:3763-3774. [PMID: 32496179 DOI: 10.1099/ijsem.0.004232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight Gram-stain-positive, rod-shaped bacterial strains were isolated from faeces of Tibetan antelopes on the Tibet-Qinghai Plateau of China. Genomic sequence analysis showed that the strains belong to the genera Actinomyces (strains 299T and 340), Corynebacterium (strains 2184T, 2185, 2183T and 2189) and Oceanobacillus (strains 160T and 143), respectively, with a percentage of similarity for the 16S rRNA gene under the species threshold of 98.7 % except for strains 160T and 143 with Oceanobacillus arenosus CAU 1183T (98.8 %). The genome sizes (and genomic G+C contents) were 3.1 Mb (49.4 %), 2.5 Mb (64.9 %), 2.4 Mb (66.1 %) and 4.1 Mb (37.1 %) for the type strains 299T, 2183T, 2184T and 160T, respectively. Two sets of the overall genome relatedness index values between our isolates and their corresponding closely related species were under species thresholds (95 % for average nucleotide identity, and 70 % for digital DNA-DNA hybridization). These results, together with deeper genotypic, genomic, phenotypic and biochemical analyses, indicate that these eight isolates should be classified as representing four novel species. Strain 299T (=CGMCC 1.16320T=JCM 33611T) is proposed as representing Actinomyces wuliandei sp. nov.; strain 2184T (=CGMCC 1.16417T=DSM 106203T) is proposed as representing Corynebacterium liangguodongii sp. nov.; strain 2183T (=CGMCC 1.16416T=DSM 106264T) is proposed as representing Corynebacterium yudongzhengii sp. nov.; and strain 160T (=CGMCC 1.16367T=DSM 106186T) is proposed as representing Oceanobacillus zhaokaii sp. nov.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Junqin Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Sihui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, Xi'an 710032, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
5
|
Dong K, Lu S, Yang J, Pu J, Lai XH, Jin D, Li J, Zhang G, Wang X, Liang J, Tian Z, Zhang S, Huang Y, Ge Y, Zhou J, Ren Z, Wu X, Huang Y, Wang S, Xu J. Nocardioides jishulii sp. nov.,isolated from faeces of Tibetan gazelle ( Procapra picticaudata). Int J Syst Evol Microbiol 2020; 70:3665-3672. [PMID: 32416735 DOI: 10.1099/ijsem.0.004218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Two novel Gram-stain-positive, irregular rod-shaped bacterial strains, dk3136T and dk3543, were isolated from the faeces of Tibetan gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau of PR China. The cells were aerobic, oxidase-negative and catalase-positive. Colonies were yellowish, circular without any observable aerial mycelium after culturing at 28 ℃ for 3 days on brain-heart infusion (BHI) agar with 5 % sheep blood. The cells grew optimally at 28 °C, pH 7.5 and with 1 % (w/v) NaCl on BHI agar supplemented with 5 % sheep blood. Phylogenetic analysis of the 16S rRNA gene sequences revealed that their nearest phylogenetic relative was Nocardioides solisilvae Ka25T (97.9 % similarity). The results of 16S rRNA gene sequence and phylogenetic/phylogenomic analyses illustrated that N. solisilvae Ka25T, Nocardioides gilvus XZ17T, Nocardioides houyundeii 78T and Nocardioides daphniae D287T were their nearest phylogenetic neighbours. The DNA G+C contents of strains dk3136T and dk3543 were 70.3 mol% and 70.4 mol%, respectively. Their genomes exhibit lower than threshold (95-96 %) average nucleotide identity to known species of the genus Nocardioides. ll-2,6-diaminopimelic acid was the diagnostic diamino acid and MK-8(H4) was the predominant respiratory quinone. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The two strains had C18 : 1 ω9c, iso-C16 : 0 and C17 : 1 ω8c as the major fatty acids, and rhamnose and galactose as the main whole-cell sugars. On the basis of the results of our genotypic, phenotypic and biochemical analyses, we conclude that strains dk3136T and dk3543 represent a novel species in genus Nocardioides, for which the name Nocardioides jishulii sp. nov. is proposed. The type strain is dk3136T (=CGMCC 4.7570T=JCM 33496T=KCTC 49314T).
Collapse
Affiliation(s)
- Kui Dong
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Junqin Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Zhi Tian
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Sihui Zhang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yajun Ge
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Zhihong Ren
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, Xi'an 710032, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Xu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
6
|
Zhu W, Yang J, Lu S, Lai XH, Jin D, Wang X, Pu J, Ren Z, Huang Y, Wu X, Zhang X, Xu J, Xu J. Actinomyces qiguomingii sp. nov., isolated from the Pantholops hodgsonii. Int J Syst Evol Microbiol 2020; 70:58-64. [PMID: 31613742 DOI: 10.1099/ijsem.0.003709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two previously undescribed, Gram-stain-positive, rod-shaped strains, 410T and 553, were isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) from the Tibet-Qinghai Plateau, PR China. The optimum growth conditions of the two novel strains were 1 % (w/v) NaCl, 37 °C and pH 7. The end products from glucose fermentation included ethanol and lactic acid. Based on results of 16S rRNA gene sequence comparison and phylogenetic and phylogenomic analyses, strains 410T and 553 were classified into the genus Actinomyces, and were closely related to Actinomyces ruminicola (97.6 %), Actinomyces oricola (93.5 %) and Actinomyces dentalis (90.8 %). The genomic G+C content of strain 410T was 67.4 mol%. Digital DNA-DNA hybridization values between strain 410T and each of the closely related species were under 70 %. The respiratory quinones were MK-10 (68 %) and MK-9 (32 %). The main cellular fatty acids of the isolates were C16 : 0, followed by C18 : 1 ω9c. The major polar lipids were diphosphatidylglycerol and phosphatidylinositol-mannoside. The whole-cell sugars contained rhamnose, ribose and glucose. The diagnostic amino acids of cell-wall peptidoglycan included alanine, glutamic acid, lysine and ornithine. The results of biochemical, chemotaxonomic and genotypic analyses revealed that the two novel strains represent a novel species of genus Actinomyces, for which the name Actinomyces qiguomingii sp. nov. is proposed. The type strain is 410T (=CGMCC 1.16361T= DSM 106201T).
Collapse
Affiliation(s)
- Wentao Zhu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, Xi'an 710032, PR China
| | - Xiaoyan Zhang
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Jianqing Xu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
7
|
Actinomyces Produces Defensin-Like Bacteriocins (Actifensins) with a Highly Degenerate Structure and Broad Antimicrobial Activity. J Bacteriol 2020; 202:JB.00529-19. [PMID: 31767775 PMCID: PMC6989792 DOI: 10.1128/jb.00529-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
We identified a strain of Actinomyces ruminicola which produces a potent bacteriocin with activity against a broad range of Gram-positive bacteria, many of which are pathogenic to animals and humans. The bacteriocin was purified and found to have a mass of 4,091 ± 1 Da with a sequence of GFGCNLITSNPYQCSNHCKSVGYRGGYCKLRTVCTCY containing three disulfide bridges. Surprisingly, near relatives of actifensin were found to be a series of related eukaryotic defensins displaying greater than 50% identity to the bacteriocin. A pangenomic screen further revealed that production of actifensin-related bacteriocins is a common trait within the genus, with 47 being encoded in 161 genomes. Furthermore, these bacteriocins displayed a remarkable level of diversity with a mean amino acid identity of only 52% between strains/species. This level of redundancy suggests that this new class of bacteriocins may provide a very broad structural basis on which to deliver and design new broad-spectrum antimicrobials for treatment of animal and human infections.IMPORTANCE Bacteriocins (ribosomally produced antimicrobial peptides) are potential alternatives to current antimicrobials given the global challenge of antimicrobial resistance. We identified a novel bacteriocin from Actinomyces ruminicola with no previously characterized antimicrobial activity. Using publicly available genomic data, we found a highly conserved yet divergent family of previously unidentified homologous peptide sequences within the genus Actinomyces with striking similarity to eukaryotic defensins. These actifensins may provide a potent line of antimicrobial defense/offense, and the machinery to produce them could be used for the design of new antimicrobials given the degeneracy that exists naturally in their structure.
Collapse
|
8
|
Li J, Lu S, Yang J, Pu J, Lai XH, Jin D, Tian Z, Dong K, Zhang S, Lei W, Zhu W, Zhang G, Ren Z, Wu X, Huang Y, Wang S, Meng X, Xu J. Actinomyces lilanjuaniae sp. nov., isolated from the faeces of Tibetan antelope ( Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:3485-3491. [PMID: 31460856 DOI: 10.1099/ijsem.0.003649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel, Gram-stain-positive, non-motile, facultatively anaerobic, rod-shaped bacteria (strains 2129T and 2119) were isolated from the faeces of Tibetan antelopes (Pantholops hodgsonii) on the Qinghai-Tibet Plateau, PR China. The 16S rRNA gene sequences of the strains showed highest similarity values to Actinomyces timonensis DSM 23838T (92.9 and 92.8 %, respectively), and phylogenetic analysis based on 16S rRNA gene and genomic sequences indicated that strains 2129T and 2119 represent a new lineage. Strains 2129T and 2119 could ferment d-adonitol and d-xylose, but were unable to utilize d-mannose and d-melibiose nor produce esterase (C4) and proline arylamidase. The G+C contents of the two strains were both 69.0 mol%. Their genomes exhibited less than 40.4 % relatedness in DNA-DNA hybridization tests (below 70 % as the recommended threshold for new species) with all available genomes of the genus Actinomyces in the NCBI database. The major fatty acids of the two strains were C18 : 1ω9c and C16 : 0, and the major polar lipids were diphosphatidylglycerol, glycolipid, phosphatidylinositol, phosphatidyl inositol mannoside and phosphoglycolipid. Based on the results of genotypic, phenotypic and biochemical analyses, it is proposed that the two unidentified bacteria be classified as representing a novel species, Actinomyces lilanjuaniae sp. nov. The type strain is 2129T (=CGMCC 4.7483T=DSM 106426T).
Collapse
Affiliation(s)
- Junqin Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Shan Lu
- Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Henan province, 475000, PR China
| | - Dong Jin
- Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Zhi Tian
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Kui Dong
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Sihui Zhang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Wenjing Lei
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Wentao Zhu
- Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, Xi'an, Shaanxi Province, 710032, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Xiangli Meng
- Ningbo International Travel Healthcare Center, Ningbo Customs District People's Republic of China, Ningbo, 315012, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|