1
|
Wang Q, Zhang J, Liang J, Wang Y, Ren C, Chen X, Cheng D, Zhang H, Liu H. Genomic Insights into Selenate Reduction by Anaerobacillus Species. Microorganisms 2025; 13:659. [PMID: 40142551 PMCID: PMC11944866 DOI: 10.3390/microorganisms13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Selenium (Se), a potentially toxic trace element, undergoes complex biogeochemical cycling in the environment, largely driven by microbial activity. The reduction in selenate or selenite to elemental selenium is an environmentally beneficial process, as it decreases both Se toxicity and mobility. This reduction is catalyzed by enzymes encoded by various related genes. The link between Se reduction gene clusters and specific taxonomic groups is significant for elucidating the ecological roles and processes of Se reduction in diverse environments. In this study, a new species of Se-reducing microorganism belonging to the genus Anaerobacillus was isolated from a mining site. A comparative analysis of the growth characteristics reveals that Anaerobacillus species exhibit notable metabolic versatility, particularly in their fermentation abilities and utilization of diverse electron donors and acceptors. Genome analysis identified a diverse array of gene clusters associated with selenate uptake (sul, pst), selenate reduction (ser), and selenite reduction (hig, frd, trx, and bsh). Since selenate reduction is the first crucial step in Se reduction, genes linked to selenate reductase are the focus. The serA gene clusters analysis suggests that the serA gene is highly conserved across Anaerobacillus species. The surrounding genes of serA show significant variability in both presence and gene size. This evolutionary difference in coenzyme utilization and serA regulation suggests distinct survival strategies among Anaerobacillus species. This study offers insights into Se bio-transformations and the adaptive strategies of Se-reducing microorganisms.
Collapse
Affiliation(s)
- Qidong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
- School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| | - Jinhui Liang
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan 250101, China;
- Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chongyang Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huanxin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World's Largest Soda Lake. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111900. [PMID: 36431035 PMCID: PMC9694729 DOI: 10.3390/life12111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Arsenic is responsible for water pollution in many places around the world and presents a serious health risk for people. Lake Van is the world's largest soda lake, and there are no studies on seasonal arsenic pollution and arsenic-resistant bacteria. We aimed to determine the amount of arsenic in the lake water and sediment, to isolate arsenic-metabolizing anaerobic bacteria and their identification, and determination of arsenic metabolism. Sampling was done from 7.5 m to represent the four seasons. Metal contents were determined by using ICP-MS. Pure cultures were obtained using the Hungate technique. Growth characteristics of the strains were determined at different conditions as well as at arsenate and arsenite concentrations. Molecular studies were also carried out for various resistance genes. Our results showed that Lake Van's total arsenic amount changes seasonally. As a result of 16S rRNA sequencing, it was determined that the isolates were members of 8 genera with arsC resistance genes. In conclusion, to sustain water resources, it is necessary to prevent chemical and microorganism-based pollution. It is thought that the arsenic-resistant bacteria obtained as a result of this study will contribute to the solution of environmental arsenic pollution problems, as they are the first data and provide the necessary basic data for the bioremediation studies of arsenic from contaminated environmental habitats. At the same time, the first data that will contribute to the creation of the seasonal arsenic map of Lake Van are obtained.
Collapse
|
3
|
Nocardioides carbamazepini sp. nov., an ibuprofen degrader isolated from a biofilm bacterial community enriched on carbamazepine. Syst Appl Microbiol 2022; 45:126339. [PMID: 35714383 DOI: 10.1016/j.syapm.2022.126339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.
Collapse
|
4
|
Banerjee S, Bedics A, Harkai P, Kriszt B, Alpula N, Táncsics A. Evaluating the aerobic xylene-degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by enrichment culturing coupled with multi-omics analysis: uncovering the role of Hydrogenophaga strains in xylene degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28431-28445. [PMID: 34989990 PMCID: PMC8993774 DOI: 10.1007/s11356-021-18300-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
To develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.
Collapse
Affiliation(s)
- Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Harkai
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Nagaraju Alpula
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Biotechnology, Microbial Biotechnology Research Unit, Kakatiya University, Warangal, India
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
5
|
Potential of Variovorax paradoxus isolate BFB1_13 for bioremediation of BTEX contaminated sites. AMB Express 2021; 11:126. [PMID: 34487274 PMCID: PMC8421498 DOI: 10.1186/s13568-021-01289-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/07/2022] Open
Abstract
Here, we report and discuss the applicability of Variovorax paradoxus strain BFB1_13 in the bioremediation of BTEX contaminated sites. Strain BFB1_13 was capable of degrading all the six BTEX-compounds under both aerobic (O2 conc. 8 mg l−1) and micro-aerobic/oxygen-limited (O2 conc. 0.5 mg l−1) conditions using either individual (8 mg‧l−1) or a mixture of compounds (~ 1.3 mg‧l−1 of each BTEX compound). The BTEX biodegradation capability of SBP-encapsulated cultures (SBP—Small Bioreactor Platform) was also assessed. The fastest degradation rate was observed in the case of aerobic benzene biodegradation (8 mg l−1 per 90 h). Complete biodegradation of other BTEX occurred after at least 168 h of incubation, irrespective of the oxygenation and encapsulation. No statistically significant difference was observed between aerobic and microaerobic BTEX biodegradation. Genes involved in BTEX biodegradation were annotated and degradation pathways were predicted based on whole-genome shotgun sequencing and metabolic analysis. We conclude that V. paradoxus strain BFB1_13 could be used for the development of reactive biobarriers for the containment and in situ decontamination of BTEX contaminated groundwater plumes. Our results suggest that V. paradoxus strain BFB1_13—alone or in co-culture with other BTEX degrading bacterial isolates—can be a new and efficient commercial bioremediation agent for BTEX contaminated sites.
Collapse
|
6
|
Szabó I, Al-Omari J, Szerdahelyi GS, Radó J, Kaszab E, Táncsics A, Szoboszlay S, Kriszt B. Dyadobacter subterraneus sp. nov., isolated from hydrocarbon-polluted groundwater from an oil refinery in Hungary. Int J Syst Evol Microbiol 2021; 71. [PMID: 34309507 DOI: 10.1099/ijsem.0.004916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterial strain (UP-52T) was isolated from hydrocarbon-polluted groundwater located near an oil refinery in Tiszaujvaros, Hungary. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Dyadobacter in the family Cytophagaceae. Its closely related species are Dyadobacter frigoris (98.00 %), Dyadobacter koreensis (97.64 %), Dyadobacter psychrophilus (97.57 %), Dyadobacter ginsengisoli (97.56 %) and Dyadobacter psychrotolerans (97.20 %). The predominant fatty acids are summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω7c/C16 : 1 ω6c), C15 : 0 iso, C16 : 1 ω5c and C17 : 0 iso 3OH. The predominant respiratory quinone detected in strain UP-52T is quinone MK-7. The dominant polar lipids are glycolipid, phosphoaminolipid, phospholipid and aminolipid. The DNA G+C content is 40.0 mol%. Flexirubin-type pigment was present. Based on these phenotypic, chemotaxonomic and phylogenetic results, UP-52T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter subterraneus sp. nov. is proposed. The type strain is UP-52T (=NCAIM B.02653T=CCM 9030T).
Collapse
Affiliation(s)
- István Szabó
- Department of Environmental Safety and Ecotoxicology, Hungarian University of Agricultural and Life Sciences, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Jafar Al-Omari
- Department of Environmental Safety and Ecotoxicology, Hungarian University of Agricultural and Life Sciences, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Gábor Soma Szerdahelyi
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Júlia Radó
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Edit Kaszab
- Department of Environmental Safety and Ecotoxicology, Hungarian University of Agricultural and Life Sciences, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - András Táncsics
- Regional University Center of Excellence, Hungarian University of Agricultural and Life Sciences, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Hungarian University of Agricultural and Life Sciences, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Hungarian University of Agricultural and Life Sciences, Páter Károly utca 1., 2100 Gödöllő, Hungary
| |
Collapse
|
7
|
Banerjee S, Táncsics A, Tóth E, Révész F, Bóka K, Kriszt B. Hydrogenophaga aromaticivorans sp. nov., isolated from a para-xylene-degrading enrichment culture, capable of degrading benzene, meta- and para-xylene. Int J Syst Evol Microbiol 2021; 71. [PMID: 33688800 DOI: 10.1099/ijsem.0.004743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A benzene, para- and meta-xylene-degrading Gram-stain-negative, aerobic, yellow-pigmented bacterium, designated as D2P1T, was isolated from a para-xylene-degrading enrichment culture. Phylogenetic analyses based on 16S rRNA genes showed that D2P1T shares a distinct phyletic lineage within the genus Hydrogenophaga and shows highest 16S rRNA gene sequence similarity to Hydrogenophaga taeniospiralis NBRC 102512T (99.2 %) and Hydrogenophaga palleronii NBRC 102513T (98.3 %). The draft genome sequence of D2P1T is 5.63 Mb long and the genomic DNA G+C content is 65.5 %. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed low genomic relatedness to its closest relatives (OrthoANI <86 %; dDDH <30 %). D2P1T contains ubiquinone 8 (Q-8) as the only respiratory quinone and phospholipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol as major polar lipids. The main whole-cell fatty acids of D2P1T are summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The polyphasic taxonomic results indicated that strain D2P1T represents a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga aromaticivorans sp. nov. is proposed. The type strain is D2P1T (=LMG 31780T=NCAIM B 02655T).
Collapse
Affiliation(s)
- Sinchan Banerjee
- Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary.,Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| | - Erika Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Fruzsina Révész
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary.,Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Balázs Kriszt
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary.,Regional University Center of Excellence in Environmental Industry, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., H-2100 Gödöllő, Hungary
| |
Collapse
|
8
|
Al-Omari J, Szabó I, Szerdahelyi GS, Radó J, Kaszab E, Griffitts J, Táncsics A, Szoboszlay S. Parvularcula mediterranea sp. nov., isolated from marine plastic debris from Zakynthos Island, Greece. Int J Syst Evol Microbiol 2020; 71. [PMID: 33295857 DOI: 10.1099/ijsem.0.004608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, dark orange-pigmented, aerobic, non-spore-forming, coccoid-shaped bacterium designated as ZS-1/3T was isolated from a floating plastic litter (polypropylene straw) sample, collected from shallow seawater near the public beach of Laganas on Zakynthos island, Greece. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate is affiliated with the genus Parvularcula in the family Parvularculaceae. Its closest relatives are Parvularcula lutaonensis (98.09 %) and Parvularcula oceanus (95.89 %). The pH and temperature ranges for growth are pH 5-10 and 20-38 °C (optima, pH 7.0 and 28 °C). The predominant fatty acids are C18 : 1 ω7c (56.84 %), C16 : 0 (27.51 %), C18 : 0 (2.25 %) and C12 : 0 (1.42 %). The predominant respiratory quinone detected in strain ZS-1/3T is quinone-10 (Q10); the majority of detected polar lipids are glycolipid. The DNA G+C content is 62.5 mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain ZS-1/3T from other members of the genus Parvularcula. Thus, strain ZS-1/3T is considered to represent a novel species of the genus, for which the name Parvularcula mediterranea. sp. nov. is proposed. The type strain is ZS-1/3T (=NCAIM B 02654T=CCM 9032T).
Collapse
Affiliation(s)
- Jafar Al-Omari
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Gábor Soma Szerdahelyi
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Júlia Radó
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Edit Kaszab
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Jeffrey Griffitts
- Southern Nazarene University, Department of Biology 6729 NW 39th Expressway Bethany 73008, Oklahoma, USA
| | - András Táncsics
- Regional University Center of Excellence, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, szent István University, Páter Károly utca 1., 2100 Gödöllő, Hungary
| |
Collapse
|
9
|
Révész F, Farkas M, Kriszt B, Szoboszlay S, Benedek T, Táncsics A. Effect of oxygen limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium: enrichment, isolation and whole-genome analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31130-31142. [PMID: 32474783 PMCID: PMC7392937 DOI: 10.1007/s11356-020-09277-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 04/12/2023]
Abstract
The primary aims of this present study were to evaluate the effect of oxygen limitation on the bacterial community structure of enrichment cultures degrading either benzene or toluene and to clarify the role of Malikia-related bacteria in the aerobic degradation of BTEX compounds. Accordingly, parallel aerobic and microaerobic enrichment cultures were set up and the bacterial communities were investigated through cultivation and 16S rDNA Illumina amplicon sequencing. In the aerobic benzene-degrading enrichment cultures, the overwhelming dominance of Malikia spinosa was observed and it was abundant in the aerobic toluene-degrading enrichment cultures as well. Successful isolation of a Malikia spinosa strain shed light on the fact that this bacterium harbours a catechol 2,3-dioxygenase (C23O) gene encoding a subfamily I.2.C-type extradiol dioxygenase and it is able to degrade benzene, toluene and ethylbenzene under clear aerobic conditions. While quick degradation of the aromatic substrates was observable in the case of the aerobic enrichments, no significant benzene degradation, and the slow degradation of toluene was observed in the microaerobic enrichments. Despite harbouring a subfamily I.2.C-type C23O gene, Malikia spinosa was not found in the microaerobic enrichments; instead, members of the Pseudomonas veronii/extremaustralis lineage dominated these communities. Whole-genome analysis of M. spinosa strain AB6 revealed that the C23O gene was part of a phenol-degrading gene cluster, which was acquired by the strain through a horizontal gene transfer event. Results of the present study revealed that bacteria, which encode subfamily I.2.C-type extradiol dioxygenase enzyme, will not be automatically able to degrade monoaromatic hydrocarbons under microaerobic conditions.
Collapse
Affiliation(s)
- Fruzsina Révész
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Milán Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary.
- Department of Environmental Protection and Safety, Szent István University, Gödöllő, Hungary.
| |
Collapse
|
10
|
Táncsics A, Farkas M, Horváth B, Maróti G, Bradford LM, Lueders T, Kriszt B. Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans Buc T. Arch Microbiol 2019; 202:421-426. [PMID: 31659381 PMCID: PMC7012976 DOI: 10.1007/s00203-019-01743-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/31/2023]
Abstract
Zoogloea oleivorans, capable of using toluene as a sole source of carbon and energy, was earlier found to be an active degrader under microaerobic conditions in aquifer samples. To uncover the genetic background of the ability of microaerobic toluene degradation in Z. oleivorans, the whole-genome sequence of the type strain BucT was revealed. Metatranscriptomic sequence reads, originated from a previous SIP study on microaerobic toluene degradation, were mapped on the genome. The genome (5.68 Mb) had a mean G + C content of 62.5%, 5005 protein coding gene sequences and 80 RNA genes. Annotation predicted that 66 genes were involved in the metabolism of aromatic compounds. Genome analysis revealed the presence of a cluster with genes coding for a multicomponent phenol-hydroxylase system and a complete catechol meta-cleavage pathway. Another cluster flanked by mobile-element protein coding genes coded a partial catechol meta-cleavage pathway including a subfamily I.2.C-type extradiol dioxygenase. Analysis of metatranscriptomic data of a microaerobic toluene-degrading enrichment, containing Z . oleivorans as an active-toluene degrader revealed that a toluene dioxygenase-like enzyme was responsible for the ring-hydroxylation, while enzymes of the partial catechol meta-cleavage pathway coding cluster were responsible for further degradation of the aromatic ring under microaerobic conditions. This further advances our understanding of aromatic hydrocarbon degradation between fully oxic and strictly anoxic conditions.
Collapse
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary.
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary.
| | - Milán Farkas
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
- Chair of Ecological Microbiology Bayreuth, Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Balázs Kriszt
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllő, Hungary
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| |
Collapse
|