1
|
An P, Yang C, Li W, Zhao D, Xiang H. The Isolation and Characterization of a Novel Psychrotolerant Cellulolytic Bacterium, Microbacterium sp. QXD-8 T. Microorganisms 2024; 12:303. [PMID: 38399707 PMCID: PMC10892437 DOI: 10.3390/microorganisms12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Cellulolytic microorganisms play a crucial role in agricultural waste disposal. Strain QXD-8T was isolated from soil in northern China. Similarity analyses of the 16S rRNA gene, as well as the 120 conserved genes in the whole-genome sequence, indicate that it represents a novel species within the genus Microbacterium. The Microbacterium sp. QXD-8T was able to grow on the CAM plate with sodium carboxymethyl cellulose as a carbon source at 15 °C, forming a transparent hydrolysis circle after Congo red staining, even though the optimal temperature for the growth and cellulose degradation of strain QXD-8T was 28 °C. In the liquid medium, it effectively degraded cellulose and produced reducing sugars. Functional annotation revealed the presence of encoding genes for the GH5, GH6, and GH10 enzyme families with endoglucanase activity, as well as the GH1, GH3, GH39, and GH116 enzyme families with β-glucosidase activity. Additionally, two proteins in the GH6 family, one in the GH10, and two of nine proteins in the GH3 were predicted to contain a signal peptide and transmembrane region, suggesting their potential for extracellularly degrade cellulose. Based on the physiological features of the type strain QXD-8T, we propose the name Microbacterium psychrotolerans for this novel species. This study expands the diversity of psychrotolerant cellulolytic bacteria and provides a potential microbial resource for straw returning in high-latitude areas at low temperatures.
Collapse
Affiliation(s)
- Peng An
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (P.A.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Changjialian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (P.A.); (W.L.)
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lee SD, Yang HL, Kim IS. Four new Microbacterium species isolated from seaweeds and reclassification of five Microbacterium species with a proposal of Paramicrobacterium gen. nov. under a genome-based framework of the genus Microbacterium. Front Microbiol 2023; 14:1299950. [PMID: 38164402 PMCID: PMC10757982 DOI: 10.3389/fmicb.2023.1299950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The taxonomic relationships of 10 strains isolated from seaweeds collected from two beaches in Republic of Korea were studied by sequencing and analyses of 16S rRNA genes and whole genomes. For the construction of a more reliable and robust 16S rRNA gene phylogeny, the authentic and nearly complete 16S rRNA gene sequences of all the Microbacterium type strains were selected through pairwise comparison of the sequences contained in several public databases including the List of Prokaryotic names with Standing in Nomenclature (LPSN). The clustering of the ten study strains into five distinct groups was apparent in this single gene-based phylogenetic tree. In addition, the 16S rRNA gene sequences of a few type strains were shown to be incorrectly listed in LPSN. An overall phylogenomic clustering of the genus Microbacterium was performed with a total of 113 genomes by core genome analysis. As a result, nine major (≥ three type strains) and eight minor (two type strains) clusters were defined mostly at gene support index of 92 and mean intra-cluster OrthoANIu of >80.00%. All of the study strains were assigned to a Microbacterium liquefaciens clade and distributed further into four subclusters in the core genome-based phylogenetic tree. In vitro phenotypic assays for physiological, biochemical, and chemotaxonomic characteristics were also carried out with the ten study strains and seven closely related type strains. Comparison of the overall genomic relatedness indices (OGRI) including OrthoANIu and digital DNA-DNA hybridization supported that the study strains constituted four new species of the genus Microbacterium. In addition, some Microbacterium type strains were reclassified as members of preexisting species. Moreover, some of them were embedded in a new genus of the family Microbacteriaceae based on their distinct separation in the core genome-based phylogenetic tree and amino acid identity matrices. Based on the results here, four new species, namely, Microbacterium aurugineum sp. nov., Microbacterium croceum sp. nov., Microbacterium galbinum sp. nov., and Microbacterium sufflavum sp. nov., are described, along with the proposal of Paramicrobacterium gen. nov. containing five reclassified Microbacterium species from the "Microbacterium agarici clade", with Paramicrobacterium agarici gen. nov., comb. nov. as the type species.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju, Republic of Korea
| | - Hong Lim Yang
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, Republic of Korea
- BioPS Co., Ltd., Daejeon, Republic of Korea
| |
Collapse
|
3
|
Xie F, Niu S, Lin X, Pei S, Jiang L, Tian Y, Zhang G. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria. J Microbiol 2021; 59:886-897. [PMID: 34491524 DOI: 10.1007/s12275-021-1186-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
We have identified three Microbacterium strains, A18JL200T, NY27T, and WY121T, that produce C50 carotenoids. Taxonomy shows they represent three novel species. These strains shared < 98.5% 16S rRNA gene sequence identity with each other and were closely related to Microbacterium aquimaris JCM 15625T, Microbacterium yannicii JCM 18959T, Microbacterium ureisolvens CFH S00084T, and Microbacterium hibisci CCTCC AB 2016180T. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) showed differences among the three strains and from their closest relatives, with values ranging from 20.4% to 34.6% and 75.5% to 87.6%, respectively. These values are below the threshold for species discrimination. Both morphology and physiology also differed from those of phylogenetically related Microbacterium species, supporting that they are indeed novel species. These strains produce C50 carotenoids (mainly decaprenoxanthin). Among the three novel species, A18JL200T had the highest total yield in carotenoids (6.1 mg/L or 1.2 mg/g dry cell weight). Unusual dual isoprenoid biosynthetic pathways (methylerythritol phosphate and mevalonate pathways) were annotated for strain A18JL200T. In summary, we found strains of the genus Microbacterium that are potential producers of C50 carotenoids, but their genome has to be investigated further.
Collapse
Affiliation(s)
- Fuquan Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, P. R. China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Siwen Niu
- Engineering Innovation Center for the Development and Utilization of Marine Bioresources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Xihuang Lin
- Analysis and Test Center, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Shengxiang Pei
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Li Jiang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, P. R. China
| | - Gaiyun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China.
| |
Collapse
|
5
|
Dong K, Yang J, Lu S, Pu J, Lai XH, Jin D, Li J, Zhang G, Wang X, Zhang S, Lei W, Ren Z, Wu X, Huang Y, Wang S, Xu J. Microbacterium wangchenii sp. nov., isolated from faeces of Tibetan gazelles ( Procapra picticaudata) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:1307-1314. [PMID: 31829917 DOI: 10.1099/ijsem.0.003912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of Gram-stain-positive, aerobic, non-spore-forming, non-motile, rod-shaped bacteria (designated dk512T and dk508) were isolated from the faeces of Tibetan gazelle (Procapra picticaudata) collected from the Qinghai-Tibet Plateau, PR China. The 16S rRNA gene sequences of the strains showed the highest identity to Microbacterium saccharophilum K-1T (98.0 and 97.9 % similarity, respectively). The phylogenetic analysis based on 16S rRNA gene sequences revealed that dk512T and dk508 were members of the genus Microbacterium, and most closely related to strains Microbacterium mitrae M4-8T and Microbacterium hatanonis FCC-01T. The strains grew optimally on brain-heart infusion (BHI) agar with 5.0 % (v/v) sheep blood at 30 °C, pH 7.0 and with 1.0 % (w/v) NaCl. The genome of type strain dk512T was 3.8 Mb with a G+C content of 70.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain dk512T and previously characterized Microbacterium species were <95 and <70 %, respectively. In strain dk512T, the detected primary cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0, the main respiratory quinones were MK-9 (37.9 %) and MK-10 (35.7 %), and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol and three unidentified glycolipids. The major cell-wall sugars were rhamnose, ribose and galactose. Alanine, glutamic acid, glycine and ornithine were in the cell-wall peptidoglycan. Based on phenotypic data and phylogenetic inference, these two strains represent a novel species of the genus Microbacterium, named here as Microbacterium wangchenii sp. nov, where dk512T is designated the type strain (=CGMCC 1.16590T=JCM 33494T=KCTC 49313T).
Collapse
Affiliation(s)
- Kui Dong
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan Province, 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Junqin Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Wenjing Lei
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Zhihong Ren
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, Xi'an 710032, Shaanxi Province, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Xu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|