1
|
Serna-Cardona N, Zamora-Leiva L, Sánchez-Carvajal E, Claverías FP, Cumsille A, Pentón KA, Vivanco B, Tietze A, Tessini C, Cámara B. Unveiling metabolo-genomic insights of potent antitumoral and antibiotic activity in Streptomyces sp. VB1 from Valparaíso Bay. Front Microbiol 2024; 15:1463911. [PMID: 39417076 PMCID: PMC11479970 DOI: 10.3389/fmicb.2024.1463911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Streptomyces sp. VB1, an actinomycete isolated from marine sediments in Valparaíso Bay, Chile, synthesizes antimicrobial and antiproliferative compounds. This study presents comprehensive metabolomics and comparative genomics analyses of strain VB1. LC-HRMS dereplication and Molecular Networking analysis of crude extracts identified antibiotics such as globomycin and daunorubicin, along with known and potentially novel members of the arylomycin family. These compounds exhibit activity against a range of clinically relevant bacterial and cancer cell lines. Phylogenomic analysis underscores the uniqueness of strain VB1, suggesting it represents a novel taxon. Such uniqueness is further supported by its Biosynthetic Novelty Index (BiNI) and BiG-SCAPE analysis of Gene Cluster Families (GCFs). Notably, two Biosynthetic Gene Clusters (BGCs) were found to be unique to VB1 compared to closely related strains: BGC #15, which encodes potentially novel anthracycline compounds with cancer cell growth inhibition properties, and BGC #28, which features a non-canonical configuration combining arylomycin, globomycin, and siamycin BGCs. This supercluster, the first described to consist of more than two adjacent and functional BGCs, co-produces at least three antimicrobial compounds from different antibiotic families. These findings highlight Streptomyces sp. VB1's potential for discovering new bioactive molecules, positioning it as a promising candidate for further research.
Collapse
Affiliation(s)
- Néstor Serna-Cardona
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Eduardo Sánchez-Carvajal
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Fernanda P. Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Karla Alexa Pentón
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| | - Beatriz Vivanco
- Laboratorio de Electroquímica y Química Analítica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Alesia Tietze
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- The Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance research, University of Gothenburg, Gothenburg, Sweden
| | - Catherine Tessini
- Laboratorio de Electroquímica y Química Analítica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM) Avenida España, Valparaíso, Chile
| |
Collapse
|
2
|
Liu Q, Wu K, Fan G, Bai X, Yang X, Pan Y, Cao L, Song W, Chen S, Xiong Y, Chen H. Corynebacterium anserum sp. nov., isolated from the faeces of greater white-fronted geese ( Anser albifrons) at Poyang Lake, PR China. Int J Syst Evol Microbiol 2021; 71. [PMID: 33427608 DOI: 10.1099/ijsem.0.004637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two Gram-stain-positive, facultatively aerobic, non-motile and rod- to coccoid-shaped bacterial strains, 23H37-10T and 4HC-13, were isolated from the faeces of greater white-fronted geese (Anser albifrons) at Poyang Lake, Jiangxi Province, PR China. Optimal growth was observed at 35-37 °C, pH 7.0-8.0 and with 0.5-1.5 % (w/v) NaCl. The 16S rRNA gene sequences of strains 23H37-10T and 4HC-13 were identical. Phylogenetic and phylogenomic analyses indicated that strains 23H37-10T and 4HC-13 formed an independent cluster within the genus Corynebacterium and showed 98.8, 97.4, 97.4 and 97.2 % 16S rRNA gene sequence similarity to Corynebacterium urogenitale LMM 1652T, Corynebacterium urealyticum DSM 7109T, Corynebacterium falsenii DSM 44353T and Corynebacterium jeikeium NCTC 11913T, respectively. Cells contained C18 :1 ω9c, C18 : 0 and C16 : 0 as the major cellular fatty acids and MK-9 (H2) as the predominant respiratory quinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidyl inositol mannosides, two unidentified phospholipids, four unidentified glycolipids and one unidentified lipid. Strain 23H37-10T contained mycolic acids, with meso-diaminopimelic acid and arabinose as the major whole-cell hydrolysates. The genome G+C content of strains 23H37-10T and 4HC-13 was 55.2 mol%. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strains 23H37-10T and 4HC-13 were 94.4 and 99.6 %, respectively. Strains 23H37-10T and 4HC-13 had dDDH and ANI values of less than 70 and 96 % with all available genomes of the genus Corynebacterium, respectively. The differential genotypic inferences, together with phenotypic and biochemical characteristics, suggested that strains 23H37-10T and 4HC-13 represent a novel species within the genus Corynebacterium, for which the name Corynebacterium anserum sp. nov. is proposed. The type strain is 23H37-10T (=GDMCC 1.1737T=KACC 21672T).
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, PR China.,The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Kui Wu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Guoyin Fan
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanyu Pan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lijiao Cao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Wentao Song
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Haiying Chen
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330006, PR China.,The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-origin and Vector-borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, PR China
| |
Collapse
|