1
|
Zhao Y, Sun T, Li Y, Yang Z, Chen J, Wang J, Yu X, Tang X, Xiao H. The host sex contributes to the endophytic bacterial community in Sargassum thunbergii and their receptacles. Front Microbiol 2024; 15:1334918. [PMID: 38559345 PMCID: PMC10978810 DOI: 10.3389/fmicb.2024.1334918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Endophytic bacteria have a complex coevolutionary relationship with their host macroalgae. Dioecious macroalgae are important producers in marine ecosystems, but there is still a lack of research on how sex influences their endophytic bacteria. In this study, the endophytic bacterial communities in male and female S. thunbergii and their reproductive tissues (receptacles) were compared using culture methods and high-throughput sequencing. The endophytic bacterial communities detected by the two methods were different. Among the 78 isolated strains, the dominant phylum, genus, and species were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively, in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria were identified by high-throughput sequencing, and the dominant phylum and genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in both the algal body and the receptacles. The two methods showed similar compositions of endophytic bacterial communities between the samples of different sexes, but the relative abundances of dominant and specific taxa were different. The high-throughput sequencing results showed more clearly that the sex of the host alga had an effect on its endophyte community assembly and a greater effect on the endophytic bacterial community in the receptacles. Moreover, most specific bacteria and predicted functional genes that differed between the samples from the males and females were related to metabolism, suggesting that metabolic differences are the main causes of sex differences in the endophytic bacterial community. Our research is the first to show that host sex contributes to the composition of endophytic bacterial communities in dioecious marine macroalgae. The results enrich the database of endophytic bacteria of dioecious marine macroalgae and pave the way for better understanding the assembly mechanism of the endophytic bacterial community of algae.
Collapse
Affiliation(s)
- Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Qingdao Branch CCCC Water Transportation Consultants Co.,LTD, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
2
|
Mu D, Ma K, He L, Wei Z. Effect of microbial pretreatment on degradation of food waste and humus structure. BIORESOURCE TECHNOLOGY 2023; 385:129442. [PMID: 37399958 DOI: 10.1016/j.biortech.2023.129442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The study aimed to investigate the pretreatment characteristics of food waste (FW) by Bacillus licheniformis and Bacillus oryzaecorticis, and to determine the contribution of microbial hydrolysis in the structure of fulvic acid (FA) and humic acid (HA). FW was pretreated with Bacillus oryzaecorticis (FO) and Bacillus licheniformis (FL), and the resulting solution was heated to synthesize humus. The results showed that the acidic substances produced by microbial treatments led to a decrease in pH. In addition, Bacillus oryzaecorticis degraded starch and released a large amount of reducing sugar, providing OH and COOH to FA molecules. Bacillus licheniformis showed a positive effect on the HA structure, which had higher OH, CH3 and aliphatics. FO is more beneficial to retain OH and COOH, while FL is more beneficial to retain amino and aliphatics. This study provided evidence for the application of Bacillus licheniformis and Bacillus oryzaecorticis in waste management.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kexin Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liangzi He
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
3
|
Navarro-Torre S, Carro L, Igual JM, Montero-Calasanz MDC. Rossellomorea arthrocnemi sp. nov., a novel plant growth-promoting bacterium used in heavy metal polluted soils as a phytoremediation tool. Int J Syst Evol Microbiol 2021; 71. [PMID: 34665118 PMCID: PMC8604163 DOI: 10.1099/ijsem.0.005015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain EAR8T is a root endophyte isolated from Arthrocnemum macrostachyum plants collected from the Odiel marshes, Huelva (Spain). It presented in vitro plant growth-promoting properties and improved the plant growth and heavy metal accumulation in polluted soils playing an important role in phytoremediation strategies. Phenotypically, strain EAR8T cells were Gram-positive, aerobic and non-motile rods with terminal oval endospores and non-swollen sporangia which form beige, opaque, butyrous, raised and irregular colonies with undulate margins. The strain was able to grow between 15–45 °C, at pH 6.0–9.0 and tolerated 0–25 % NaCl (w/v) showing optimal growth conditions on trypticase soy agar plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 37 °C for 24 h. Chemotaxonomic analyses showed that the isolate has meso-diaminopimelic acid as the peptidoglycan in the cell wall and MK-7 as the major respiratory quinone. The predominant fatty acids were anteiso-C15 : 0 and iso-C15 : 0 and the polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analyses based on the whole proteomes of closest sequenced relatives confirmed that strain EAR8T is affiliated to the genus Rossellomorea and forms a clade with Rossellomorea vietnamensis 15-1T with maximum support. Genome analyses showed that EAR8T has indole-3-acetic acid and siderophore biosynthesis and transporters genes and genes related to resistance against heavy metals. Phenotypic and phylogenomic comparative studies suggested that strain EAR8T is a new representative of the genus Rossellomorea and the name Rossellomorea arthrocnemi sp. nov. is proposed. Type strain is EAR8T (=CECT 9072T=DSM 103900T).
Collapse
Affiliation(s)
- Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Lorena Carro
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
| | - José Mariano Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain.,Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain
| | | |
Collapse
|