1
|
Liu FL, Abdugheni R, Ran CG, Zhou N, Liu SJ. Eubacterium album sp. nov., a butyrate-producing bacterium isolated from faeces of a healthy human. Int J Syst Evol Microbiol 2024; 74. [PMID: 38739685 DOI: 10.1099/ijsem.0.006380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.
Collapse
Affiliation(s)
- Feng-Lan Liu
- College of Life Sciences, Hebei University, Baoding, 071000, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Cong-Guo Ran
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
2
|
Munson E, Carella A, Carroll KC. Valid and accepted novel bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2022. J Clin Microbiol 2023; 61:e0083823. [PMID: 37889007 PMCID: PMC10662342 DOI: 10.1128/jcm.00838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Although some nomenclature changes have caused consternation among clinical microbiologists, the discovery of novel taxa and improving classification of existing groups of organisms is exciting and adds to our understanding of microbial pathogenesis. In this mini-review, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2022. Henceforth, these bacteriology taxonomic summaries will appear annually. Several of the novel Gram-positive organisms have been associated with disease, namely, the Corynebacterium kroppenstedtii-like organisms Corynebacterium parakroppenstedtii sp. nov. and Corynebacterium pseudokroppenstedtii sp. nov. A newly described Streptococcus species, Streptococcus toyakuensis sp. nov., is noteworthy for exhibiting multi-drug resistance. Among the novel Gram-negative pathogens, Vibrio paracholerae sp. nov. stands out as an organism associated with diarrhea and sepsis and has probably been co-circulating with pandemic Vibrio cholerae for decades. Many new anaerobic organisms have been described in this past year largely from genetic assessments of gastrointestinal microbiome collections. With respect to revised taxa, as discussed in previous reviews, the genus Bacillus continues to undergo further division into additional genera and reassignment of existing species into them. Reassignment of two subspecies of Fusobacterium nucleatum to species designations (Fusobacterium animalis sp. nov. and Fusobacterium vincentii sp. nov.) is also noteworthy. As was typical of previous reviews, literature updates for selected clinically relevant organisms discovered between 2017 and 2021 have been included.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Arianna Carella
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Hivarkar SS, Vasudevan G, Dhakephalkar PK, Dagar SS. Description of Sporanaerobium hydrogeniformans gen. nov., sp. nov., an obligately anaerobic, hydrogen-producing bacterium isolated from Aravali hot spring in India. Arch Microbiol 2023; 205:305. [PMID: 37572166 DOI: 10.1007/s00203-023-03641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
An obligately anaerobic bacterium XHS1971T, capable of degrading cellulose and xylan, was isolated from a sediment sample of Aravali hot spring, Ratnagiri, India. Cells of strain XHS1971T were Gram-stain-negative, spore-forming, motile, long-rods. Growth was observed at temperatures 30-50 °C (optimum 40-45 °C), pH 5.0-10.0 (optimum pH 8.0) and NaCl concentrations 0-0.5% (optimum 0%). Generation time of strain XHS1971T was 5 h under optimised growth conditions. Strain XHS1971T showed the ability to metabolise different complex and simple sugars constituting lignocellulosic biomass. Glucose was fermented majorly into hydrogen, formic acid, acetic acid, and ethanol, whereas carbon dioxide, butyric acid, lactic acid and succinic acid were produced in traces. 16S rRNA gene analysis of strain XHS1971T revealed < 94.5% homology with Cellulosilyticum lentocellum DSM5427T followed by Cellulosilyticum ruminicola JCM14822T, identifying strain as a distinct member of family Lachnospiraceae. The major cellular fatty acids (> 5%) were C14:0, C16:0, C18:0, and C16:1 ω7c. The genome size of the strain was 3.74 Mb with 35.3 mol% G + C content, and genes were annotated to carbohydrate metabolism, including genes involved in the degradation of cellulose and xylan and the production of hydrogen, ethanol and acetate. The uniqueness of strain was further validated by digital DNA-DNA hybridisation (dDDH), Average Nucleotide Identity (ANI), and Average Amino Acid Identity (AAI) values of 22%, 80%, and 63%, respectively, with nearest phylogenetic affiliates. Based on the detailed analyses, we propose a new genus and species, Sporanaerobium hydrogeniformans gen. nov., sp. nov., for strain XHS1971T (= MCC3498T = KCTC15729T = JCM32657T) within family Lachnospiraceae.
Collapse
Affiliation(s)
- Sai Suresh Hivarkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gowdaman Vasudevan
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sumit Singh Dagar
- Bioenergy Group, Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, India.
| |
Collapse
|
4
|
Chaplin AV, Shcherbakova VA, Pikina AP, Sokolova SR, Korzhanova M, Belova VA, Korostin DO, Rebrikov DV, Kardonsky DA, Urban AS, Zakharzhevskaya NB, Suzina NE, Podoprigora IV, Das MS, Kholopova DO, Efimov BA. Diplocloster agilis gen. nov., sp. nov. and Diplocloster modestus sp. nov., two novel anaerobic fermentative members of Lachnospiraceae isolated from human faeces. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Three novel strains of Gram-stain-negative, obligately anaerobic, spore-forming straight or slightly curved rods with pointed ends occurring singly or in pairs were isolated from the faeces of healthy human children. The strains were characterized by mesophilic fermentative metabolism and production of acetate, ethanol and H2 as the end metabolic products. Strains ASD3451 and ASD5720T were motile, fermented lactose and raffinose, and weakly fermented maltose. Strain ASD4241T was non-motile and did not ferment the carbohydrates listed above but fermented starch. Strains ASD3451 and ASD5720T shared average nucleotide identity higher than 98.5 % with each other, while ASD4241T had only 88.5-89 % identity to them. Based on phylogenetic and chemotaxonomic analyses, we propose Diplocloster agilis gen. nov., sp. nov. (ASD5720T=JCM 34353T=VKM B-3497T) and Diplocloster modestus sp. nov. (ASD4241T=JCM 34351T=VKM B-3498T) within the family
Lachnospiraceae
.
Collapse
Affiliation(s)
- Andrei V. Chaplin
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Viktoria A. Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Pushchino, Russia
| | - Alla P. Pikina
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofia R. Sokolova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Margarita Korzhanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vera A. Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy O. Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Denis V. Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry A. Kardonsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | - Anatoly S. Urban
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | - Natalia B. Zakharzhevskaya
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research, Russian Academy of Sciences”, Pushchino, Russia
| | - Irina V. Podoprigora
- Department of Microbiology and Virology, Peoples' Friendship University of Russia, Moscow, Russia
| | - Milana S. Das
- Department of Microbiology and Virology, Peoples' Friendship University of Russia, Moscow, Russia
| | - Daria O. Kholopova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris A. Efimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|