1
|
Li X, Zhou C, Li M, Zhang Q, Su L, Li X. Paracoccus broussonetiae subsp. drimophilus subsp. nov., a Novel Subspecies Salt-Tolerant Endophytic Bacterium from Maize Root in Hunan. Life (Basel) 2025; 15:354. [PMID: 40141699 PMCID: PMC11944123 DOI: 10.3390/life15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
In an investigation exploring endophytic microbiota from agricultural crops, an aerobic, non-motile, Gram-negative, coccobacillus-shaped bacterial isolate, designated as strain NGMCC 1.201697T, was isolated from maize roots in Hunan Province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NGMCC 1.201697T belonged to the genus Paracoccus, showing the highest sequence similarity to Paracoccus broussonetiae CPCC 101403T (99.86%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 98.57% and 87.90% between the novel isolate and its closest phylogenetic relative. However, phenotypic characterization further differentiated the isolate from P. broussonetiae CPCC 101403T. The isolate showed enhanced environmental tolerance adaptability (growth in 0-8% NaCl and 4-37 °C), unique enzymatic activities (esterase C4, β-glucosidase, L-proline arylamidase, and β-galactosidase), and expanded metabolic capabilities (D-mannitol, D-cellobiose, saccharose, and so on). The major polar lipids consisted of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), two unidentified glycolipids (GLs) and four unidentified phospholipids (PLs). The predominant respiratory quinone was ubiquinone-10, and the major fatty acid was summed feature 8 (C18:1 ω7c, 69.42%). The DNA G + C content was 64.49 mol%. Based on results of these analyses, strain NGMCC 1.201697T represents a novel subspecies of Paracoccus broussonetiae, for which the name Paracoccus broussonetiae subsp. drimophilus subsp. nov. is proposed. The type-strain is NGMCC 1.201697T (=CGMCC 1.61958T =JCM 37104T).
Collapse
Affiliation(s)
- Xue Li
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100021, China;
| | - Chi Zhou
- Hunan Institute of Microbiology, Changsha 410009, China; (C.Z.); (Q.Z.)
- Hunan Engineering Research Center for Endophytic Microbial Resources Mining and Utilization, Changsha 410125, China
| | - Ming Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Qingzhuang Zhang
- Hunan Institute of Microbiology, Changsha 410009, China; (C.Z.); (Q.Z.)
- Hunan Engineering Research Center for Endophytic Microbial Resources Mining and Utilization, Changsha 410125, China
| | - Lei Su
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100021, China;
| | - Xin Li
- Hunan Institute of Microbiology, Changsha 410009, China; (C.Z.); (Q.Z.)
- Hunan Engineering Research Center for Endophytic Microbial Resources Mining and Utilization, Changsha 410125, China
| |
Collapse
|
2
|
Mu W, Liu H, Guo B, Wang K, Hu J, Song J, Li X, Wei S, Liu A, Liu H. Paracoccus benzoatiresistens sp. nov., a benzoate resistance and selenite reduction bacterium isolated from wetland. Antonie Van Leeuwenhoek 2024; 117:81. [PMID: 38777900 DOI: 10.1007/s10482-024-01969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
A Gram-stain-negative, aerobic, non-motile, catalase- and oxidase-positive, pale orange, rod-shaped strain EF6T, was isolated from a natural wetland reserve in Hebei province, China. The strain grew at 25-37 °C (optimum, 30 °C), pH 5-9 (optimum, pH 7), and in the presence of 1.0-4.0% (w/v) NaCl (optimum, 2%). A phylogenetic analysis based on 16S rRNA gene sequence revealed that strain EF6T belongs to the genus Paracoccus, and the closest members were Paracoccus shandongensis wg2T with 98.1% similarity, Paracoccus fontiphilus MVW-1 T (97.9%), Paracoccus everestensis S8-55 T (97.7%), Paracoccus subflavus GY0581T (97.6%), Paracoccus sediminis CMB17T (97.3%), Paracoccus caeni MJ17T (97.0%), and Paracoccus angustae E6T (97.0%). The genome size of strain EF6T was 4.88 Mb, and the DNA G + C content was 65.3%. The digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain EF6T and the reference strains were all below the threshold limit for species delineation (< 32.8%, < 88.0%, and < 86.7%, respectively). The major fatty acids (≥ 5.0%) were summed feature 8 (86.3%, C18:1 ω6c and/or C18:1 ω7c) and C18:1 (5.0%) and the only isoprenoid quinone was Q-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, five unidentified phospholipids, and an unidentified aminolipid. Strain EF6T displays notable resistance to benzoate and selenite, with higher tolerance levels (25 g/L for benzoate and 150 mM for selenite) compared to the closely related species. Genomic analysis identified six benzoate resistance genes (acdA, pcaF, fadA, pcaC, purB, and catA) and twenty selenite resistance and reduction-related genes (iscR, ssuB, ssuD, selA, selD and so on). Additionally, EF6T possesses unique genes (catA, ssuB, and ssuC) absent in the closely related species for benzoate and selenite resistance. Its robust resistance to benzoate and selenite, coupled with its genomic makeup, make EF6T a promising candidate for the remediation of both organic and inorganic pollutants. It is worth noting that the specific resistance phenotypes described above were not reported in other novel species in Paracoccus. Based on the results of biochemical, physiological, phylogenetic, and chemotaxonomic analyses, combined with comparisons of the 16S rRNA gene sequence and the whole genome sequence, strain EF6T is considered to represent a novel species of the genus Paracoccus within the family Rhodobacteraceae, for which the name Paracoccus benzoatiresistens sp. nov. is proposed. The type strain is EF6T (= GDMCC 1.3400 T = JCM 35642 T = MCCC 1K08702T).
Collapse
Affiliation(s)
- Weidong Mu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Haoran Liu
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Bai Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Kaiyue Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jinhua Hu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Jianjun Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Xiuyun Li
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, People's Republic of China
| | - Shuzhen Wei
- Center for Wetland Conservation and Research, Hengshui University, Hengshui, 053000, People's Republic of China.
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Province, Hengshui, 053000, People's Republic of China.
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, 053000, People's Republic of China.
| | - Aijv Liu
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Province, Hengshui, 053000, People's Republic of China
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Hongliang Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Province, Hengshui, 053000, People's Republic of China.
| |
Collapse
|
3
|
Xu SS, Lai QL, Liu ZZ, Xu Y. Paracoccus onchidii sp. nov., a moderately halophilic bacterium isolated from a marine invertebrate from the South China Sea. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01848-7. [PMID: 37231142 DOI: 10.1007/s10482-023-01848-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
A novel moderately halophilic bacterial strain, designated Z330T, was isolated from the egg of a marine invertebrate of the genus Onchidium collected in the South China Sea. The 16S rRNA gene sequence of strain Z330T exhibited the highest similarity value to that of the type strain Paracoccus fistulariae KCTC 22803T (97.6%), Paracoccus seriniphilus NBRC 100798T (97.6%) and Paracoccus aestuarii DSM 19484T (97.6%). Phylogenomic and 16S rRNA phylogenetic analysis showed that strain Z330T was most closely related to P. seriniphilus NBRC 100798T and P. fistulariae KCTC 22803T. Strain Z330T grew optimally at 28-30 °C, pH 7.0-8.0 with the presence of 5.0-7.0% (w/v) NaCl. In addition, growth of strain Z330T occurred at 0.5-16% NaCl, indicated strain Z330T was a moderately halophilic and halotolerant bacterium of genus Paracoccus. The predominant respiratory quinone in strain Z330T was identified as ubiquinone-10. The major polar lipids of strain Z330T were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, glycolipid and six unidentified polar lipids. The major fatty acids of strain Z330T was summed feature 8 (C18:1 ω6c and/or C18:1 ω7c). The draft genome sequence of strain Z330T includes 4,084,570 bp in total (N50 = 174,985 bp) with a medium read coverage of 463.6 × and 83 scaffolds. The DNA G + C content of strain Z330T was 60.5%. In silico DNA-DNA hybridization with the four type strains showed 20.5, 22.3, 20.1 and 20.1% relatedness to Paracoccus fistulariae KCTC 22803T, Paracoccus seriniphilus NBRC 100798T, Paracoccus aestuarii DSM 19484T and Paracoccus denitrificans 1A10901T, respectively. And the average nucleotide identity (ANIb) values between strain Z330T and these four type strains were 76.2, 80.0, 75.8 and 73.8%, respectively, lower than the 95-96% threshold value for dividing prokaryotic species. On the basis of the phenotypic, phylogenetic, phylogenomic and chemotaxonomic properties, a novel species of the genus Paracoccus, Paracoccus onchidii sp. nov. is proposed with the type strain Z330T (= KCTC 92727T = MCCC 1K08325T).
Collapse
Affiliation(s)
- Shan-Shan Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qi-Liang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People's Republic of China
| | - Zeng-Zhi Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
4
|
Burbick CR, Munson E, Lawhon SD, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria (Including Members of the Phylum Planctomycetota) Isolated from Aquatic Host Species Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142622. [PMID: 36719221 PMCID: PMC9945501 DOI: 10.1128/jcm.01426-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased interest in farmed aquatic species, aquatic conservation measures, and microbial metabolic end-product utilization have translated into a need for awareness and recognition of novel microbial species and revisions to bacterial taxonomy. Because this need has largely been unmet, through a 4-year literature review, we present lists of novel and revised bacterial species (including members of the phylum Planctomycetota) derived from aquatic hosts that can serve as a baseline for future biennial summaries of taxonomic revisions in this field. Most new and revised taxa were noted within oxidase-positive and/or nonglucose fermentative Gram-negative bacilli, including members of the Tenacibaculum, Flavobacterium, and Vibrio genera. Valid and effectively published novel members of the Streptococcus, Erysipelothrix, and Photobacterium genera are additionally described from disease pathogenesis perspectives.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Xue HP, Fu ZY, He W, Wang L, Li WJ, Zhang AH, Huang JK, Zhang DF, Zhao Z. Paracoccus marinaquae sp. nov., isolated from coastal water of the Yellow Sea. Arch Microbiol 2023; 205:58. [PMID: 36622427 DOI: 10.1007/s00203-023-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
A Gram-stain-negative, non-motile and coccoid bacterial strain, designated XHP0099T, was isolated from the coastal water of the Yellow Sea, China. Growth occurred at 20-37 ℃ (optimum, 28 ℃), pH 5.0-9.0 (optimum, pH 7.0-8.0), and with 0-7.0% NaCl (optimum, 2.0-3.0%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain XHP0099T was related to members of the genus Paracoccus and shared the highest sequence similarity with "P. siganidrum" M26 (98.2%), followed by P. alkanivorans 4-2 T (97.6%) and P. alkenifer DSM 11593 T (97.4%). The average nucleotide identity, amino acid identity, and digital DNA-DNA hybridization values of strain XHP0099T against related members in the genus Paracoccus were below the cut-off points proposed for the delineation of a novel species. The major cellular fatty acids (> 10%) were summed feature 8 (C18:1 ω7c/C18:1 ω6c), and C18:0. The major isoprenoid quinone was Q-10 and the polar lipids contained diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), aminolipid (AL) and unidentified polar lipids (L). The G + C content of the genomic DNA of strain XHP0099T was 66.0%. Genomic analysis suggested that strain XHP0099T harbored gene clusters for formaldehyde and the XoxF-type methanol oxidation and type 1 Calvin cycle, which could confer the methylotrophy pathway. Based on the phenotypic, phylogenetic, biochemical and chemotaxonomic analysis, strain XHP0099T represents a novel species of the genus Paracoccus, for which the name Paracoccus marinaquae sp. nov. is proposed. The type strain is XHP0099T (= JCM 34661 T = GDMCC 1.2414 T = MCCC 1K05846T).
Collapse
Affiliation(s)
- Hua-Peng Xue
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Zi-Yue Fu
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Wei He
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Lei Wang
- MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Wen-Jun Li
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China.,State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
| | - Ai Hua Zhang
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Jian-Ke Huang
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Dao-Feng Zhang
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China.
| | - Zhe Zhao
- Institute of Marine Biotechnology and Bio-Resource Utilization, College of Oceanography, Hohai University, Nanjing, People's Republic of China.
| |
Collapse
|