1
|
Emsley SA, Loughran RM, Shlafstein MD, Pfannmuller KM, De La Flor YT, Lein CG, Dove NC, Koyack MJ, Oline DK, Hanson TE, Videau P, Saw JH, Ushijima B. Fluctibacter corallii gen. nov., sp. nov., isolated from the coral Montipora capitata on a reef in Kāne'ohe Bay, O'ahu, Hawai'i, reclassification of Aestuariibacter halophilus as Fluctibacter halophilus comb. nov., and Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica. Antonie Van Leeuwenhoek 2024; 117:45. [PMID: 38424217 DOI: 10.1007/s10482-024-01934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Strain AA17T was isolated from an apparently healthy fragment of Montipora capitata coral from the reef surrounding Moku o Lo'e in Kāne'ohe Bay, O'ahu, Hawai'i, USA, and was taxonomically evaluated using a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain AA17T shared the greatest similarity with Aestuariibacter halophilus JC2043T (96.6%), and phylogenies based on 16S rRNA gene sequences grouped strain AA17T with members of the Aliiglaciecola, Aestuariibacter, Lacimicrobium, Marisediminitalea, Planctobacterium, and Saliniradius genera. To more precisely infer the taxonomy of strain AA17T, a phylogenomic analysis was conducted and indicated that strain AA17T formed a monophyletic clade with A. halophilus JC2043T, divergent from Aestuariibacter salexigens JC2042T and other related genera. As a result of monophyly and multiple genomic metrics of genus demarcation, strain AA17T and A. halophilus JC2043T comprise a distinct genus for which the name Fluctibacter gen. nov. is proposed. Based on a polyphasic characterisation and identifying differences in genomic and taxonomic data, strain AA17T represents a novel species, for which the name Fluctibacter corallii sp. nov. is proposed. The type strain is AA17T (= LMG 32603 T = NCTC 14664T). This work also supports the reclassification of A. halophilus as Fluctibacter halophilus comb. nov., which is the type species of the Fluctibacter genus. Genomic analyses also support the reclassification of Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica.
Collapse
Affiliation(s)
- Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Rachel M Loughran
- Microbiology Graduate Program, University of Delaware, Newark, DE, USA
| | | | | | - Yesmarie T De La Flor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | | | - Marc J Koyack
- School of Arts and Sciences, Gwynedd Mercy University, Gwynedd Valley, PA, USA
| | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Thomas E Hanson
- Microbiology Graduate Program, University of Delaware, Newark, DE, USA
- School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Delaware, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA
- AgBiome, Research Triangle Park, NC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| |
Collapse
|
2
|
Park S, Kim I, Chhetri G, So Y, Jung Y, Woo H, Seo T. Alteromonas gilva sp. nov. and Erythrobacter fulvus sp. nov., isolated from a tidal mudflat. Int J Syst Evol Microbiol 2023; 73. [PMID: 37676705 DOI: 10.1099/ijsem.0.006032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Strains chi3T and sf7T were collected from a tidal mudflat around Dongmak beach in Ganghwa, Republic of Korea. Both strains were Gram-stain-negative, aerobic or facultatively anaerobic, and rod-shaped. Results of phylogenetic tree analysis based on 16S rRNA and whole-genome sequences suggested that strains chi3T and sf7T belong to the genera Alteromonas and Erythrobacter, respectively. The cells of strain chi3T were non-motile and grew at 15-45 °C (optimum, 38 °C), at pH 6.0-10.0 (optimum, pH 8.0) and in the presence of 0-9.0 % (w/v) NaCl (optimum, 2.0 %). The cells of strain sf7T were motile as they had flagella and grew at 20-48 °C (optimum, 38 °C), at pH 6.0-10.0 (optimum, pH 9.0) and in the presence of 0-5.0 % (w/v) NaCl (optimum, 1.0 %). Strains chi3T and sf7T have average nucleotide identity values (70.0-70.4% and 78.9-81.7 %) and digital DNA-DNA hybridization values (21.8-22.3% and 21.0-25.6 %) with reference strains in the genera Alteromonas and Erythrobacter, respectively. Data from digital DNA-DNA hybridization, as well as phylogenetic, biochemical and physiological analyses, indicated the distinction of the two strains from the genera Alteromonas and Erythrobacter, respectively, and we thus propose the names Alteromonas gilva sp. nov. (type strain chi3T=KACC 22866T=TBRC 16612T) and Erythrobacter fulvus sp. nov. (type strain sf7T=KACC 22865T=TBRC 16611T).
Collapse
Affiliation(s)
- Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Yonghee Jung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Sun HN, Yu CM, Fu HH, Wang P, Fang ZG, Zhang YZ, Chen XL, Zhao F. Diversity of Marine 1,3-Xylan-Utilizing Bacteria and Characters of Their Extracellular 1,3-Xylanases. Front Microbiol 2021; 12:721422. [PMID: 34659148 PMCID: PMC8517272 DOI: 10.3389/fmicb.2021.721422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
1,3-xylan is present in the cell walls of some red and green algae and is an important organic carbon in the ocean. However, information on its bacterial degradation is quite limited. Here, after enrichment with 1,3-xylan, the diversity of bacteria recovered from marine algae collected in Hainan, China, was analyzed with both the 16S rRNA gene amplicon sequencing and the culture-dependent method. Bacteria recovered were affiliated with more than 19 families mainly in phyla Proteobacteria and Bacteroidetes, suggesting a high bacterial diversity. Moreover, 12 strains with high 1,3-xylanase-secreting ability from genera Vibrio, Neiella, Alteromonas, and Gilvimarinus were isolated from the enrichment culture. The extracellular 1,3-xylanases secreted by Vibrio sp. EA2, Neiella sp. GA3, Alteromonas sp. CA13-2, and Gilvimarinus sp. HA3-2, which were taken as representatives due to their efficient utilization of 1,3-xylan for growth, were further characterized. The extracellular 1,3-xylanases secreted by these strains showed the highest activity at pH 6.0–7.0 and 30–40°C in 0–0.5M NaCl, exhibiting thermo-unstable and alkali-resistant characters. Their degradation products on 1,3-xylan were mainly 1,3-xylobiose and 1,3-xylotriose. This study reveals the diversity of marine bacteria involved in the degradation and utilization of 1,3-xylan, helpful in our understanding of the recycling of 1,3-xylan driven by bacteria in the ocean and the discovery of novel 1,3-xylanases.
Collapse
Affiliation(s)
- Hai-Ning Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Mei Yu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zai-Guang Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Gago JF, Viver T, Urdiain M, Pastor S, Kämpfer P, Ferreira E, Rossello-Mora R. Description of three new Alteromonas species Alteromonas antoniana sp. nov., Alteromonas lipotrueae sp. nov. and Alteromonas lipotrueiana sp. nov. isolated from marine environments, and proposal for reclassification of the genus Salinimonas as Alteromonas. Syst Appl Microbiol 2021; 44:126226. [PMID: 34171620 DOI: 10.1016/j.syapm.2021.126226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
In the course of a bioprospective study of marine prokaryotes for cosmetic purposes, four strains, MD_567T, MD_652T, MD_674 and PS_109T, were isolated that 16S rRNA gene affiliation indicated could represent three new species within the family Alteromonadaceae. A thorough phylogenetic, genomic and phenotypic taxonomic study confirmed that the isolates could be classified as three new taxa for which we propose the names Alteromonas antoniana sp. nov., Alteromonas lipotrueae sp. nov. and Alteromonas lipotrueiana sp. nov. In addition, the consistent monophyletic nature of the members of the genera Alteromonas and Salinimonas showed that both taxa should be unified, and therefore we also propose the reclassification of the genus Salinimonas within Alteromonas, as well as new combinations for the species of the former. As the specific epithets profundi and sediminis are already used for Alteromonas species, we created the nomina nova "Alteromonas alteriprofundi" nom. nov. and Alteromonas alterisediminis nom. nov. to accommodate the new names for "Salinimonas profundi" and Salinimonas sediminis. Whole genome comparisons also allowed us to detect the unexpected codification of aromatic hydrocarbon biodegradative compounds, such as benzoate and catechol, whose activity was then demonstrated phenotypically. Finally, the high genomic identity between the type strains of Alteromonas stellipolaris and Alteromonas addita indicated that the latter is a junior heterotypic synonym of Alteromonas stellipolaris.
Collapse
Affiliation(s)
- Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Lipotrue S.L., Barcelona, Spain.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | | - Peter Kämpfer
- Institute of Applied Microbiology (IFZ), Justus Liebig Universität Giessen, Giessen, Germany
| | | | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| |
Collapse
|
5
|
Expression and Characterization of a Cold-Adapted Alginate Lyase with Exo/Endo-Type Activity from a Novel Marine Bacterium Alteromonas portus HB161718 T. Mar Drugs 2021; 19:md19030155. [PMID: 33802659 PMCID: PMC8002439 DOI: 10.3390/md19030155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.
Collapse
|