1
|
León MJ, Vera-Gargallo B, de la Haba RR, Sánchez-Porro C, Ventosa A. Integrating genomic evidence for an updated taxonomy of the bacterial genus Spiribacter. Sci Rep 2024; 14:30057. [PMID: 39627276 PMCID: PMC11615355 DOI: 10.1038/s41598-024-80127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The genus Spiribacter encompasses halophilic bacteria widely distributed in hypersaline environments worldwide. Despite their ecological significance, initially isolating Spiribacter species under laboratory settings was challenging due to the lack of knowledge of their growth and cultivation requirements. However, with improved understanding of their ecological niche and metabolic pathways, additional species of Spiribacter have been successfully isolated and identified from diverse locations around the globe. Enriched media with sodium pyruvate as carbon source facilitated the isolation of twelve new strains closely related to the genus Spiribacter from hypersaline environments in Spain. Genome sequencing and analysis of these new strains and previously described Spiribacter species provided insights into their genomic features and phylogenomic relationships, supporting the delineation of three distinct new species within this genus, designated as Spiribacter insolitus sp. nov., Spiribacter onubensis sp. nov., and Spiribacter pallidus sp. nov. In Spiribacter species, streamlined genomes enhance survival in hypersaline environments by reducing non-essential genes and optimizing resource utilization. Key genes involved in osmoprotectant mechanisms, including those for the metabolism of myo-inositol, hydroxyproline, and L-proline, were identified and numerous transporters were noted, ensuring efficient nutrient acquisition and osmotic balance. Notably, these new species, along with other Spiribacter strains, exhibit metabolic diversity in utilizing inorganic sulfur compounds, including thiosulfate and tetrathionate, for energy production and adaptation to hypersaline environments. The presence of thiosulfate dehydrogenase (TsdA) genes suggests their capability to oxidize thiosulfate to tetrathionate, potentially influencing both aerobic and anaerobic respiration. Furthermore, the prevalence of the sqr gene indicates a role for sulfide oxidation in Spiribacter metabolism, underlining their metabolic versatility in saline habitats. These adaptations allow Spiribacter to thrive in nutrient-limited, high-salinity habitats. Moreover, genome mining analysis and physiological disparities observed in the already described species Spiribacter halobius raise significant challenges to its classification within the genus Spiribacter.
Collapse
Affiliation(s)
- María José León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain.
| |
Collapse
|
2
|
Zhang TT, Liu D, Zhang XY, Wang JC, Du ZJ. Spiribacter salilacus sp. nov., a novel moderately halophilic bacterium isolated from a saline lake in China. Arch Microbiol 2023; 205:166. [PMID: 37014519 DOI: 10.1007/s00203-023-03511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
A Gram-staining-negative, non-motile, rod-shaped or curved rod-shaped, moderately halophilic bacterium, designated C176T, was isolated from Yuncheng Salt Lake in Shanxi Province, P.R. China. The optimal temperature, salinity and pH for growth of strain C176T was 37 °C, 6% (w/v) NaCl and 7.5. Phylogenetic analysis using 16S rRNA gene sequences indicated strain C176T has the highest similarity with Spiribacter salinus LMG 27464 T (97.7%), following by the S. halobius E85T (97.6%), S. curvatus DSM 28542 T (97.2%), S. roseus CECT 9117 T (97.0%) and S. vilamensis DSM 21056 T (96.9%). The ANI and dDDH values between strain C176T and S. salinus LMG 27464 T were 69.8 and 17.7%, respectively. The DNA G + C content of genome for strain C176T was 54.1%. Summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0 were detected as its major fatty acids, with content of 38.7 and 28.6% respectively, while Q-8 was the predominant ubiquinone. The major polar lipids of strain C176T contained phospholipid, phosphatidylglycerol and phosphoglycolipid. In accordance with results of polyphasic taxonomy, strain C176T is considered as a novel species of the genus Spiribacter, for which the name Spiribacter salilacus sp. nov. is proposed. The type strain is C176T (= MCCC 1H00417T = KCTC 72692 T).
Collapse
Affiliation(s)
- Tong-Tong Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, China
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, China
| | - Xiao-Yu Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Jia-Cheng Wang
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
3
|
Abbas AM, Aboelmagd A, Kishk SM, Nasrallah HH, Boyd WC, Kalil H, Orabi AS. A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction. Molecules 2022; 27:molecules27217540. [PMID: 36364366 PMCID: PMC9653649 DOI: 10.3390/molecules27217540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
A novel derivative of ibuprofen and salicylaldehyde N′-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by 1HNMR, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl·2H2O, [Ni(L)2], [Co(L)2]·H2O, [Gd(L)2(H2O)2](NO3)·2H2O and [Sm(L)2(H2O)2](NO3)·2H2O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT Homo sapiens). The binding energies were −7.52, −9.41, −9.51, −8.09, −10.04, and −8.05 kcal/mol for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, which suggests the enhancement of anti-inflammatory behaviors compared with the binding energy of ibuprofen (−5.38 kcal/mol). The anti-inflammatory properties of the new compounds were assessed in vitro using the western blot analysis method and the enzyme-linked immunosorbent assay (ELISA), consistent with the outcomes obtained from docking. The half-maximal inhibitory concentration (IC50) values are 4.9, 1.7, 3.7, 5.6, 2.9, and 2.3 µM for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, showing that they are more effective inhibitors of COX2 than ibuprofen (IC50 = 31.4 µM). The brain or intestinal estimated permeation method (BOILED-Egg) showed that HL and its Co complex have high gastrointestinal absorption, while only the free ligand has high brain penetration. The binding constants of Co, Cu, and Gd complexes with DNA were recorded as 2.20 × 104, 2.27 × 106, and 4.46 × 103 M−1, respectively, indicating the intercalator behavior of interaction. The newly synthesized ibuprofen derivative and its metal complexes showed greater anti-inflammatory activity than ibuprofen.
Collapse
Affiliation(s)
- Abbas M. Abbas
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.M.A.); (H.K.); (A.S.O.)
| | - Ahmed Aboelmagd
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Safaa M. Kishk
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hossam H. Nasrallah
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Faculty of Dentistry, Sinai University, Kantara 41612, Egypt
| | | | - Haitham Kalil
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
- Correspondence: (A.M.A.); (H.K.); (A.S.O.)
| | - Adel S. Orabi
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.M.A.); (H.K.); (A.S.O.)
| |
Collapse
|