1
|
Gélinas V, Paquet VE, Paquet MF, Charette SJ, Vincent AT. Specific amino acid changes correlate with pathogenic flavobacteria. Genome 2024; 67:368-377. [PMID: 39351909 DOI: 10.1139/gen-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Flavobacterium is a genus of microorganisms living in a variety of hosts and habitats across the globe. Some species are found in fish organs, and only a few, such as Flavobacterium psychrophilum and Flavobacterium columnare, cause severe disease and losses in fish farms. The evolution of flavobacteria that are pathogenic to fish is unknown, and the protein changes accountable for the selection of their colonization to fish have yet to be determined. A phylogenetic tree was constructed with the complete genomic sequences of 208 species of the Flavobacterium genus using 861 softcore genes. This phylogenetic analysis revealed clade CII comprising nine species, including five pathogenic species, and containing the most species that colonize fish. Thirteen specific amino acid changes were found to be conserved across 11 proteins within the CII clade compared with other clades, and these proteins were enriched in functions related to replication, recombination, and repair. Several of these proteins are known to be involved in pathogenicity and fitness adaptation in other bacteria. Some of the observed amino acid changes can be explained by preferential selection for certain codons and tRNA frequency. These results could help explain how species belonging to the CII clade adapt to fish environments.
Collapse
Affiliation(s)
- Vincent Gélinas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | - Maude F Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Kim M, Cha IT, Lee KE, Li M, Park SJ. Pangenome analysis provides insights into the genetic diversity, metabolic versatility, and evolution of the genus Flavobacterium. Microbiol Spectr 2023; 11:e0100323. [PMID: 37594286 PMCID: PMC10655711 DOI: 10.1128/spectrum.01003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Members of the genus Flavobacterium are widely distributed and produce various polysaccharide-degrading enzymes. Many species in the genus have been isolated and characterized. However, few studies have focused on marine isolates or fish pathogens, and in-depth genomic analyses, particularly comparative analyses of isolates from different habitat types, are lacking. Here, we isolated 20 strains of the genus from various environments in South Korea and sequenced their full-length genomes. Combined with published sequence data, we examined genomic traits, evolution, environmental adaptation, and putative metabolic functions in total 187 genomes of isolated species in Flavobacterium categorized as marine, host-associated, and terrestrial including freshwater. A pangenome analysis revealed a correlation between genome size and coding or noncoding density. Flavobacterium spp. had high levels of diversity, allowing for novel gene repertories via recombination events. Defense-related genes only accounted for approximately 3% of predicted genes in all Flavobacterium genomes. While genes involved in metabolic pathways did not differ with respect to isolation source, there was substantial variation in genomic traits; in particular, the abundances of tRNAs and rRNAs were higher in the host-associdated group than in other groups. One genome in the host-associated group contained a Microviridae prophage closely related to an enterobacteria phage. The proteorhodopsin gene was only identified in four terrestrial strains isolated for this study. Furthermore, recombination events clearly influenced genomic diversity and may contribute to the response to environmental stress. These findings shed light on the high genetic variation in Flavobacterium and functional roles in diverse ecosystems as a result of their metabolic versatility. IMPORTANCE The genus Flavobacterium is a diverse group of bacteria that are found in a variety of environments. While most species of this genus are harmless and utilize organic substrates such as proteins and polysaccharides, some members may play a significant role in the cycling for organic substances within their environments. Nevertheless, little is known about the genomic dynamics and/or metabolic capacity of Flavobacterium. Here, we found that Flavobacterium species may have an open pangenome, containing a variety of diverse and novel gene repertoires. Intriguingly, we discovered that one genome (classified into host-associated group) contained a Microviridae prophage closely related to that of enterobacteria. Proteorhodopsin may be expressed under conditions of light or oxygen pressure in some strains isolated for this study. Our findings significantly contribute to the understanding of the members of the genus Flavobacterium diversity exploration and will provide a framework for the way for future ecological characterizations.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju, South Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, South Korea
| |
Collapse
|
3
|
Flavobacterium litorale sp. nov., isolated from red alga. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative and rod-shaped bacterial strain (WSW3-B6T) was isolated from red alga collected from the West Sea, Republic of Korea. Cells of strain WSW3-B6T were non-motile, aerobic and produced slightly yellow and mucoid colonies on marine agar. The strain grew optimally at 23–30 °C, with 0.5–4 % NaCl (w/v) and at pH 6.5–8.5. A phylogenetic analysis of the 16S rRNA gene revealed that strain WSW3-B6T belongs to the genus
Flavobacterium
within the family
Flavobacteriaceae
, having the highest sequence similarity to
Flavobacterium arcticum
SM1502T (96.7%), followed by
Flavobacterium salilacus
subsp.
altitudinum
LaA7.5T (96.2%) and
Flavobacterium salilacus
subsp.
salilacus
SaA2.12T (96.2%). The complete sequence of a circular chromosome of strain WSW3-B6T determined by combination of Oxford Nanopore and Illumina platforms comprised a total 2 725 095 bp with G+C content of 37.1 mol%. A comparative analysis based on the whole genome also showed the distinctiveness of strain WSW3-B6T. The average nucleotide identity (ANI) values between strain WSW3-B6T and the closest strains
F. arcticum
SM1502T,
F. salilacus
subsp.
altitudinum
LaA7.5T and
F. salilacus
subsp.
salilacus
SaA2.12T were 78.3, 77.8 and 77.7 %, respectively, while the digital DNA–DNA hybridization (dDDH) values between strain WSW3-B6T and the above closely related strains were 21.0, 20.4 and 20.3 %, respectively. Both the ANI and dDDH values supported the creation of a new species in the genus
Flavobacterium
. The major fatty acids (>10 %) were iso-C15 : 0 (19.3 %), C16 : 0 (14.0 %), iso-C17 : 0 3-OH (13.1 %) and C18 : 0 (10.7 %). The polar lipids of strain WSW3-B6T included phosphatidylethanolamine, three unidentified aminolipids and three unidentified lipids. Moreover, MK-6 was the only respiratory quinone. A comparison of the phylogenetic distinctiveness and the unique phenotypic and chemotaxonomic characteristics among strain WSW3-B6T and closely related type strains supported that strain WSW3-B6T (=KCTC 82708T=GDMCC 1.2627T) represents a novel species of the genus
Flavobacterium
, for which the name Flavobacterium litorale sp. nov. is proposed.
Collapse
|