1
|
Nguyen TTH, Vuong TQ, Han HL, Kim SG. Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov., marine anaerobic laminarin and xylan degraders in the phylum Bacteroidota. Sci Rep 2024; 14:24329. [PMID: 39414901 PMCID: PMC11484911 DOI: 10.1038/s41598-024-74787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The bacterial group of the phylum Bacteroidota greatly contributes to the global carbon cycle in marine ecosystems through its specialized ability to degrade marine polysaccharides. In this study, it is proposed that two novel facultative anaerobic strains, DS1-an-13321T and DS1-an-2312T, which were isolated from a sea squirt, represent a novel genus, Halosquirtibacter, with two novel species in the family Prolixibacteraceae. The 16S rRNA sequence similarities of these two strains were 91.26% and 91.37%, respectively, against Puteibacter caeruleilacunae JC036T, which is the closest recognized neighbor. The complete genomes of strains DS1-an-13321T and DS1-an-2312T each consisted of a single circular chromosome with a size of 4.47 and 5.19 Mb, respectively. The average amino acid identity and the percentage of conserved proteins against the type species of the genera in the family Prolixibacteraceae ranged from 48.33 to 52.35% and 28.34-37.37%, respectively, which are lower than the threshold for genus demarcation. Strains DS1-an-13321T and DS1-an-2312T could grow on galactose, glucose, maltose, lactose, sucrose, laminarin, and starch, and only DS1-an-2312T could grow on xylose and xylan under fermentation conditions. These strains produced acetic acid and propionic acid as the major fermentation products. Genome mining of the genomes of the two strains revealed 27 and 34 polysaccharide utilization loci, which included 155 and 249 carbohydrate-active enzymes (CAZymes), covering 57 and 65 CAZymes families, respectively. The laminarin-degrading enzymes in both strains were cell-associated, and showed exo-hydrolytic activity releasing glucose as a major product. The xylan-degrading enzymes of strain DS1-an-2312T was also cell-associated, and had endo-hydrolytic activities, releasing xylotriose and xylotetraose as major products. The evidence from phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of a novel genus with two novel species in the family Prolixibacteraceae, for which the names Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov. are proposed. The type strain of Halosquirtibacter laminarini is DS1-an-13321T (= KCTC 25031T = DSM 115329T) and the type strain of Halosquirtibacter xylanolyticus is DS1-an-2312T (= KCTC 25032T = DSM 115328T).
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Phacogen Institute of Technology, B4 building, Pham Ngoc Thach street, Kim Lien, Dong Da district, Hanoi, 10700, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
3
|
Yu WX, Liang QY, Xuan XQ, Du ZJ, Mu DS. Gaoshiqia sediminis gen. nov., sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37133916 DOI: 10.1099/ijsem.0.005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
A Gram-stain-negative, facultative anaerobic, motile, rod-shaped and orange bacterium, designated A06T, was obtained off the coast of Weihai, PR China. Cells were 0.4-0.5×0.6-1.0 µm in size. Strain A06T grew at 20-40 °C (optimum, 33 °C), at pH 6.0-8.0 (optimum, pH 6.5-7.0) and in the presence of 0-8 % NaCl (w/v) (optimum, 2 %). Cells were oxidase and catalase positive. Menaquinone-7 was detected as the major respiratory quinone. The dominant cellular fatty acids were identified as C15:0 2-OH, iso-C15:0, anteiso-C15:0 and iso-C15:1 ω6c. The DNA G+C content of strain A06T was 46.1 mol%. The polar lipids were phosphatidylethanolamine, one aminolipid, one glycolipid and three unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A06T is a member of the family Prolixibacteraceae and exhibited the highest sequence similarity to Mangrovibacterium diazotrophicum DSM 27148T (94.3 %). Based on its phylogenetic and phenotypic characteristics, strain A06T is considered to represent a novel genus in the family Prolixibacteraceae, for which the name Gaoshiqia gen. nov. is proposed. The type species is Gaoshiqia sediminis sp. nov., with type strain A06T (=KCTC 92029T=MCCC 1H00491T). The identification and acquisition of microbial species and genes in sediments will help broaden the understanding of microbial resources and lay a foundation for its application in biotechnology. Strain A06T uses an enrichment method, so the isolation of strain A06T is of great significance to the enrichment of marine microbial resources.
Collapse
Affiliation(s)
- Wen-Xing Yu
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Qi-Yun Liang
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Xiao-Qi Xuan
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, PR China
| | - Da-Shuai Mu
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, PR China
| |
Collapse
|
4
|
Modi A, Singh S, Patki J, Padmadas N. Screening and identification of azo dye decolorizers from mangrove rhizospheric soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83496-83511. [PMID: 35768712 DOI: 10.1007/s11356-022-21610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Removal of synthetic textile dyes poses a challenge to the textile industry and a threat to the environment's flora and fauna. These dyes are recalcitrant and not very amenable to physical and chemical techniques of degradation. Hence, several studies on alternative bioremediation methods involving plants, plant roots, single microbes, or a consortium of microbes for the decolorization of dyes have been carried out. In the present study, potent bacteria for dye decolorization were isolated from rhizospheric soil of mangrove plants collected from Kamothe, Navi Mumbai, India. Of the 20 isolates obtained after enrichment, seven isolates were used for further screening of efficient decolorization ability in minimal basal media containing 10% glucose, 2.5% trace metal solution, and 0.1% of Methyl Orange (MO) dye concentration. Physiological parameters to optimize the decolorization of dye at optimum pH, temperature, and incubation time were studied for all the seven isolates. UV-vis and Fourier transform infrared spectroscopy were used to investigate dye decolorization. The seven isolates were characterized morphologically, biochemically, and molecular identification of these bacterial isolates was performed by 16S rRNA sequence analysis. The isolates were identified as Bacillus paramycoides, Pseudomonas taiwanensis, Citrobacter murliniae, Acinetobacter pitti, Exiguobacterium acetylicum, Psychrobacter celer, and Aeromonas taiwanensis. Out of these, Aeromonas taiwanensis has shown exceptional capacity by ~ 100% decolorization of azo dye in minimum time.
Collapse
Affiliation(s)
- Akhilesh Modi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382011, Gujarat, India
- School of Biotechnology and Bioinformatics, D.Y Patil Deemed to Be University, Navi Mumbai, 400706, India
| | - Sunita Singh
- School of Biotechnology and Bioinformatics, D.Y Patil Deemed to Be University, Navi Mumbai, 400706, India.
| | - Jyoti Patki
- School of Biotechnology and Bioinformatics, D.Y Patil Deemed to Be University, Navi Mumbai, 400706, India
| | - Naveen Padmadas
- School of Biotechnology and Bioinformatics, D.Y Patil Deemed to Be University, Navi Mumbai, 400706, India
| |
Collapse
|
5
|
Yan J, Sun Y, Kang Y, Meng X, Zhang H, Cai Y, Zhu W, Yuan X, Cui Z. An innovative strategy to enhance the ensiling quality and methane production of excessively wilted wheat straw: Using acetic acid or hetero-fermentative lactic acid bacterial community as additives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:11-20. [PMID: 35691057 DOI: 10.1016/j.wasman.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Ensiling is an effective storage strategy for agricultural biomass, especially for energy crops (mainly energy grasses and maize). However, the ensiling of excessively wilted crop straw is limited due to material characteristics, such as a high lignocellulosic content and low water-soluble carbohydrate and moisture contents. In this study, acetic acid or hetero-fermentative lactic acid bacterial community (hetero-fermentative LAB) were employed as silage additives to improve the ensiling process of excessively wilted wheat straw (EWS). The results showed that the additives inhibited the growth of Enterobacteriaceae and Clostridium_sensu_stricto_12, whose abundances decreased from 55.8% to 0.03-0.2%, respectively. The growth of Lactobacillus was accelerated, and the abundances increased from 1.3% to 80.1-98.4% during the ensiling process. Lactic acid fermentation was the dominant metabolic pathway in the no additive treatment. The additives increased acetic acid fermentation and preserved the hemicellulose and cellulose contents, increasing the methane yield by 17.7-23.9%. This study shows that ensiling with acetic acid or hetero-fermentative LAB is an effective preservation and storage strategy for efficient methane production from EWS.
Collapse
Affiliation(s)
- Jing Yan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Yibo Sun
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Yuehua Kang
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xingyao Meng
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huan Zhang
- College of Engineering, Nanjing Agriculture University, Nanjing 210014, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wanbin Zhu
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| |
Collapse
|