1
|
Dobhal S, Santillana G, Stulberg MJ, Arizala D, Alvarez AM, Arif M. Development and validation of genome-informed and multigene-based qPCR and LAMP assays for accurate detection of Dickeya solani: a critical quarantine pathogen threatening the potato industry. Microbiol Spectr 2025; 13:e0078424. [PMID: 39660908 PMCID: PMC11723575 DOI: 10.1128/spectrum.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/13/2024] [Indexed: 12/12/2024] Open
Abstract
Dickeya solani one of the most aggressive pectinolytic phytopathogens, causes blackleg disease in potatoes, resulting in significant economic losses and adversely impacting one of the world's most important food crops. The diagnostics methods are critical in monitoring the latent infection for international trade of potato seed tubers and in implementation of control strategies. Our study employed a whole-genome comparative approach, identifying unique target gene loci (LysR and TetR family of transcriptional regulators gene regions) and designing loop-mediated isothermal amplification (LAMP) and a multi-gene-based multiplex TaqMan qPCR assays for specific detection and differentiation of D. solani. Both methods underwent meticulous validation with extensive inclusivity and exclusivity panels, exhibiting 100% accuracy and no false positives or negatives. The LAMP method demonstrated the detection limit of 100 fg and 1 CFU per reaction using pure genomic DNA and crude bacterial cell lysate, respectively. The qPCR detection limit was 1 pg, 100 fg and 10 fg with quadplex, triplex, and singleplex, respectively. None of the assays were impacted by any inhibitory or competitive effects after adding host DNA (in qPCR) or crude lysate (in LAMP). The assays proved robust and reproducible in detecting the target pathogen in infected samples, with the LAMP assay being field-deployable due to its simplicity and rapid results acquisition within approximately 9 min. The reproducibility was confirmed by performing the assay in two independent laboratories. These assays offer a robust, rapid, and reliable solution for routine testing, with applications in phytosanitary inspection, disease diagnosis, and epidemiological studies.IMPORTANCEDickeya solani, one of the most aggressive soft rot causing bacteria and a quarantine pathogen, poses a severe threat to food security by causing substantial economic losses to the potato industry. Accurate and timely detection of this bacterium is vital for monitoring latent infections, particularly for international trade of potato seed tubers, and for implementing effective control strategies. In this research, we have developed LAMP and multi-gene-based multiplex TaqMan qPCR assays for specific detection of D. solani. These assays, characterized by their precision, rapidity, and robustness, are crucial for distinguishing D. solani from related species. Offering unparalleled sensitivity and specificity, these assays are indispensable for phytosanitary inspection and epidemiological monitoring, providing a powerful tool enabling management of this threatening pathogen.
Collapse
Affiliation(s)
- Shefali Dobhal
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| | - Gem Santillana
- Plant Pathogen
Confirmatory Diagnostics Laboratory (PPCDL), APHIS PPQ, Science and
Technology, United States Department of
Agriculture, Beltsville,
Maryland, USA
| | - Michael J. Stulberg
- Plant Pathogen
Confirmatory Diagnostics Laboratory (PPCDL), APHIS PPQ, Science and
Technology, United States Department of
Agriculture, Beltsville,
Maryland, USA
| | - Dario Arizala
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| | - Anne M. Alvarez
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| | - Mohammad Arif
- Department of Plant
and Environmental Protection Sciences, University of Hawaii at
Manoa, Honolulu,
Hawaii, USA
| |
Collapse
|
2
|
Zhou J, Hu M, Zhang L. Dickeya Diversity and Pathogenic Mechanisms. Annu Rev Microbiol 2024; 78:621-642. [PMID: 39565948 DOI: 10.1146/annurev-micro-041222-012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The Dickeya genus comprises numerous pathogenic species that cause diseases in various crops, vegetables, and ornamental plants across the globe. The pathogens have become very widespread in recent years, and numerous newly identified Dickeya-associated plant diseases have been reported, which poses an immense threat to agricultural production and is a serious concern internationally. Evidence is accumulating that a diversity of hosts, environmental habitats, and climates seems to shape the abundance of Dickeya species in nature and the differentiation of pathogenic mechanisms. This review summarizes the latest findings on the genome diversity and pathogenic mechanisms of Dickeya spp., with a focus on the intricate virulence regulatory mechanisms mediated by quorum sensing and pathogen-host interkingdom communication systems.
Collapse
Affiliation(s)
- Jianuan Zhou
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Ming Hu
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianhui Zhang
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
3
|
Xie C, Gu W, Chen Z, Liang Z, Huang S, Zhang LH, Chen S. Polyamine signaling communications play a key role in regulating the pathogenicity of Dickeya fangzhongdai. Microbiol Spectr 2023; 11:e0196523. [PMID: 37874149 PMCID: PMC10715095 DOI: 10.1128/spectrum.01965-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Dickeya fangzhongdai is a newly identified plant bacterial pathogen with a wide host range. A clear understanding of the cell-to-cell communication systems that modulate the bacterial virulence is of key importance for elucidating its pathogenic mechanisms and for disease control. In this study, we present evidence that putrescine molecules from the pathogen and host plants play an essential role in regulating the bacterial virulence. The significance of this study is in (i) demonstrating that putrescine signaling system regulates D. fangzhongdai virulence mainly through modulating the bacterial motility and production of PCWD enzymes, (ii) outlining the signaling and regulatory mechanisms with which putrescine signaling system modulates the above virulence traits, and (iii) validating that D. fangzhongdai could use both arginine and ornithine pathways to synthesize putrescine signals. To our knowledge, this is the first report to show that putrescine signaling system plays a key role in modulating the pathogenicity of D. fangzhongdai.
Collapse
Affiliation(s)
- Congcong Xie
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Weihan Gu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Zhongqiao Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Zhibin Liang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Shufen Huang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Lian-Hui Zhang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| |
Collapse
|
4
|
Hugouvieux-Cotte-Pattat N, Pédron J, Van Gijsegem F. Insight into biodiversity of the recently rearranged genus Dickeya. FRONTIERS IN PLANT SCIENCE 2023; 14:1168480. [PMID: 37409305 PMCID: PMC10319131 DOI: 10.3389/fpls.2023.1168480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
The genus Dickeya includes plant pathogenic bacteria attacking a wide range of crops and ornamentals as well as a few environmental isolates from water. Defined on the basis of six species in 2005, this genus now includes 12 recognized species. Despite the description of several new species in recent years, the diversity of the genus Dickeya is not yet fully explored. Many strains have been analyzed for species causing diseases on economically important crops, such as for the potato pathogens D. dianthicola and D. solani. In contrast, only a few strains have been characterized for species of environmental origin or isolated from plants in understudied countries. To gain insights in the Dickeya diversity, recent extensive analyzes were performed on environmental isolates and poorly characterized strains from old collections. Phylogenetic and phenotypic analyzes led to the reclassification of D. paradisiaca (containing strains from tropical or subtropical regions) in the new genus, Musicola, the identification of three water species D. aquatica, D. lacustris and D. undicola, the description of a new species D. poaceaphila including Australian strains isolated from grasses, and the characterization of the new species D. oryzae and D. parazeae, resulting from the subdivision of the species D. zeae. Traits distinguishing each new species were identified from genomic and phenotypic comparisons. The high heterogeneity observed in some species, notably for D. zeae, indicates that additional species still need to be defined. The objective of this study was to clarify the present taxonomy of the genus Dickeya and to reassign the correct species to several Dickeya strains isolated before the current classification.
Collapse
Affiliation(s)
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| | - Frédérique Van Gijsegem
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| |
Collapse
|
5
|
Petrzik K, Vacek J, Kmoch M, Binderová D, Brázdová S, Lenz O, Ševčík R. Field Use of Protective Bacteriophages against Pectinolytic Bacteria of Potato. Microorganisms 2023; 11:microorganisms11030620. [PMID: 36985194 PMCID: PMC10056506 DOI: 10.3390/microorganisms11030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The pectinolytic Dickeya solani bacterium is an important pathogen found in potatoes. We conducted laboratory and field experiments mimicking severe and mild Dickeya spp. infection and investigated the application of a mixture of two lytic bacteriophages before and after bacterial infection to protect the plants. Application of the phage solution to tuber disks and wounded tubers did not completely eliminate the infection but reduced the development of soft rot symptoms by 59.5–91.4%, depending on the phage concentration. In the field trial, plants treated with bacteriophages after severe Dickeya infection had 5–33% greater leaf cover and 4–16% greater tuber yield compared to untreated plants. When simulating a mild infection, leaf cover was 11–42% greater, and tuber yield was 25–31% greater compared to untreated plants. We conclude that the phage mixture has the potential to protect potatoes ecologically from D. solani.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Josef Vacek
- Department of Growing Technologies, Potato Research Institute Havlíčkův Brod, Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic
| | - Martin Kmoch
- Laboratory of Virology, Department of Genetic Resources, Potato Research Institute Havlíčkův Brod, Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic
- Correspondence:
| | - Denisa Binderová
- Laboratory of Virology, Department of Genetic Resources, Potato Research Institute Havlíčkův Brod, Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic
| | - Sára Brázdová
- Institute of Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ondřej Lenz
- Institute of Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Rudolf Ševčík
- Institute of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology (VŠCHT), Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
6
|
DeLude A, Wells R, Boomla S, Chuang SC, Urena F, Shipman A, Rubas N, Kuehu DL, Bickerton B, Peterson T, Dobhal S, Arizala D, Klair D, Ochoa-Corona F, Ali ME, Odani J, Bingham JP, Jenkins DM, Fletcher J, Stack JP, Alvarez AM, Arif M. Loop-mediated isothermal amplification (LAMP) assay for specific and rapid detection of Dickeya fangzhongdai targeting a unique genomic region. Sci Rep 2022; 12:19193. [PMID: 36357509 PMCID: PMC9649655 DOI: 10.1038/s41598-022-22023-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Dickeya fangzhongdai, a bacterial pathogen of taro (Colocasia esculenta), onion (Allium sp.), and several species in the orchid family (Orchidaceae) causes soft rot and bleeding canker diseases. No field-deployable diagnostic tool is available for specific detection of this pathogen in different plant tissues. Therefore, we developed a field-deployable loop-mediated isothermal amplification (LAMP) assay using a unique genomic region, present exclusively in D. fangzhongdai. Multiple genomes of D. fangzhongdai, and other species of Dickeya, Pectobacterium and unrelated genera were used for comparative genomic analyses to identify an exclusive and conserved target sequence from the major facilitator superfamily (MFS) transporter gene region. This gene region had broad detection capability for D. fangzhongdai and thus was used to design primers for endpoint PCR and LAMP assays. In-silico validation showed high specificity with D. fangzhongdai genome sequences available in the NCBI GenBank genome database as well as the in-house sequenced genome. The specificity of the LAMP assay was determined with 96 strains that included all Dickeya species and Pectobacterium species as well as other closely related genera and 5 hosts; no false positives or false negatives were detected. The detection limit of the assay was determined by performing four sensitivity assays with tenfold serially diluted purified genomic DNA of D. fangzhongdai with and without the presence of crude host extract (taro, orchid, and onion). The detection limit for all sensitivity assays was 100 fg (18-20 genome copies) with no negative interference by host crude extracts. The assays were performed by five independent operators (blind test) and on three instruments (Rotor-Gene, thermocycler and dry bath); the assay results were concordant. The assay consistently detected the target pathogen from artificially inoculated and naturally infected host samples. The developed assay is highly specific for D. fangzhongdai and has applications in routine diagnostics, phytosanitary and seed certification programs, and epidemiological studies.
Collapse
Affiliation(s)
- Anuhea DeLude
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Riley Wells
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Sherine Boomla
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Shu-Cheng Chuang
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Frank Urena
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA ,grid.410445.00000 0001 2188 0957Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI USA
| | - Aaron Shipman
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Noelle Rubas
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Donna Lee Kuehu
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA ,grid.410445.00000 0001 2188 0957Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI USA
| | - Buster Bickerton
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Taylor Peterson
- grid.410445.00000 0001 2188 0957Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Shefali Dobhal
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Dario Arizala
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Diksha Klair
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Francisco Ochoa-Corona
- grid.65519.3e0000 0001 0721 7331Institute for Biosecurity & Microbial Forensics, Oklahoma State University, Stillwater, OK USA
| | - Md Emran Ali
- grid.213876.90000 0004 1936 738XDepartment of Plant Pathology, University of Georgia, Tifton, GA USA
| | - Jenee Odani
- grid.410445.00000 0001 2188 0957Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Jon-Paul Bingham
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Daniel M. Jenkins
- grid.410445.00000 0001 2188 0957Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI USA
| | - Jacqueline Fletcher
- grid.65519.3e0000 0001 0721 7331Institute for Biosecurity & Microbial Forensics, Oklahoma State University, Stillwater, OK USA
| | - James P. Stack
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA
| | - Anne M. Alvarez
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| | - Mohammad Arif
- grid.410445.00000 0001 2188 0957Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI USA
| |
Collapse
|
7
|
Comparative Pathogenomic Analysis of Two Banana Pathogenic Dickeya Strains Isolated from China and the Philippines. Int J Mol Sci 2022; 23:ijms232112758. [DOI: 10.3390/ijms232112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Dickeya is a major and typical member of soft rot Pectobacteriaceae (SRP) with a wide range of plant hosts worldwide. Previous studies have identified D. zeae as the causal agent of banana soft rot disease in China. In 2017, we obtained banana soft rot pathogen strain FZ06 from the Philippines. Genome sequencing and analysis indicated that FZ06 can be classified as D. dadantii and represents a novel subspecies of D. dadantii, which we propose to name as subsp. paradisiaca. Compared with Chinese banana soft rot pathogenic strain D. zeae MS2, strain FZ06 has a similar host range but different virulence; FZ06 is significantly less virulent to banana and potato but more virulent to Chinese cabbage and onion. Characterization of virulence factors revealed obviously less production of pectate lyases (Pels), polygalacturonases (Pehs), proteases (Prts), and extrapolysaccharides (EPSs), as well as lower swimming and swarming motility and biofilm formation in strain FZ06. Genomic comparison of the two strains revealed five extra gene clusters in FZ06, including one Stt-type T2SS, three T4SSs, and one T4P. Expression of cell wall degrading enzyme (CWDE)-encoding genes is significantly lower in FZ06 than in MS2.
Collapse
|
8
|
Hugouvieux-Cotte-Pattat N, Royer M, Gueguen E, Le Guen P, Süssmuth RD, Reverchon S, Cociancich S. Specificity and genetic polymorphism in the Vfm quorum sensing system of plant pathogenic bacteria of the genus Dickeya. Environ Microbiol 2022; 24:1467-1483. [PMID: 35014170 PMCID: PMC9306890 DOI: 10.1111/1462-2920.15889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
Abstract
The Vfm quorum sensing (QS) system is preponderant for the virulence of different species of the bacterial genus Dickeya. The vfm gene cluster encodes 26 genes involved in the production, sensing or transduction of the QS signal. To date, the Vfm QS signal has escaped detection by analytical chemistry methods. However, we report here a strain‐specific polymorphism in the biosynthesis genes vfmO and vfmP, which is predicted to be related to the production of different analogues of the QS signal. Consequently, the Vfm communication could be impossible between strains possessing different variants of the genes vfmO/P. We constructed three Vfm QS biosensor strains possessing different vfmO/P variants and compared these biosensors for their responses to samples prepared from 34 Dickeya strains possessing different vfmO/P variants. A pattern of specificity was demonstrated, providing evidence that the polymorphism in the genes vfmO/P determines the biosynthesis of different analogues of the QS signal. Unexpectedly, this vfmO/P‐dependent pattern of specificity is linked to a polymorphism in the ABC transporter gene vfmG, suggesting an adaptation of the putative permease VfmG to specifically bind different analogues of the QS signal. Accordingly, we discuss the possible involvement of VfmG as co‐sensor of the Vfm two‐component regulatory system.
Collapse
Affiliation(s)
| | - Monique Royer
- CIRAD, UMR PHIM, Montpellier, F-34398, France.,PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, Villeurbanne, F-69622, France
| | - Paul Le Guen
- CIRAD, UMR PHIM, Montpellier, F-34398, France.,PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Berlin, D-10623, Germany
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, Villeurbanne, F-69622, France
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, Montpellier, F-34398, France.,PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
9
|
Hugouvieux-Cotte-Pattat N, Van Gijsegem F. Diversity within the Dickeya zeae complex, identification of Dickeya zeae and Dickeya oryzae members, proposal of the novel species Dickeya parazeae sp. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34726587 DOI: 10.1099/ijsem.0.005059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Dickeya comprises plant pathogens that cause diseases in a large range of economically important crops and ornamentals. Strains previously assigned to the species Dickeya zeae are major pathogens attacking vital crops such as maize and rice. They are also frequently isolated from surface water. The newly described species Dickeya oryzae is closely related to D. zeae members, so that the limit between the two species can be difficult to define. In order to clearly distinguish the two species, globally described by the term 'D. zeae complex', we sequenced the genome of four new water isolates and compared them to 14 genomes available in databases. Calculation of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values confirmed the phylogenomic classification into the two species D. zeae and D. oryzae. It also allowed us to propose a new species, Dickeya parazeae sp. nov., to characterize a clade distinct from those containing the D. zeae type strain NCPPB2538T. Strain S31T (CFBP 8716T=LMG 32070T) isolated from water in France is proposed as the type strain of the new species. Phenotypic analysis of eight publically available strains revealed traits common to the five tested D. oryzae members but apparently not shared by the D. oryzae type strain. Genomic analyses indicated that a simple distinction between the species D. zeae, D. parazeae and D. oryzae can be obtained on the basis of the recA sequence. D. oryzae can be distinguished from the two other species by growth on l-tartaric acid. Based on the recA marker, several strains previously identified as D. zeae were re-assigned to the species D. parazeae or D. oryzae. This study also highlighted the broad host range diversity of these three species.
Collapse
Affiliation(s)
| | - Frédérique Van Gijsegem
- Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), F-75252 Paris cedex, France
| |
Collapse
|
10
|
Hugouvieux-Cotte-Pattat N, des-Combes CJ, Briolay J, Pritchard L. Proposal for the creation of a new genus Musicola gen. nov., reclassification of Dickeya paradisiaca (Samson et al. 2005) as Musicola paradisiaca comb. nov. and description of a new species Musicola keenii sp. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34617878 DOI: 10.1099/ijsem.0.005037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya. There are currently 12 described species of Dickeya, although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca, the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA-DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, CNRS, INSA Lyon, UCBL, UMR 5240 Microbiologie Adaptation et Pathogénie, F-69622 Villeurbanne, France
| | - Cécile Jacot des-Combes
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS FR 3728 BioEnviS, plateforme DTAMB, F-69621 Villeurbanne, France
| | - Jérôme Briolay
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS FR 3728 BioEnviS, plateforme DTAMB, F-69621 Villeurbanne, France
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow G4 ORE, UK
| |
Collapse
|
11
|
Complete Genome Sequence of Dickeya dadantii subsp. dieffenbachiae Strain S3-1, Isolated from a White-Flowered Calla Lily in Taiwan. Microbiol Resour Announc 2021; 10:e0062021. [PMID: 34528816 PMCID: PMC8444975 DOI: 10.1128/mra.00620-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi S3-1 is a bacterial soft rot pathogen of the white-flowered calla lily. The complete genome sequence of the strain was determined and used to reclassify the strain as Dickeya dadantii subsp. dieffenbachiae. The sequence will be useful to study plant host-driven speciation in strains of D. dadantii.
Collapse
|
12
|
Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States. Microorganisms 2021; 9:microorganisms9081733. [PMID: 34442812 PMCID: PMC8401272 DOI: 10.3390/microorganisms9081733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/04/2022] Open
Abstract
An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of Pectobacterium and Dickeya are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of Dickeya and Pectobacterium species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated dnaJ, dnaX and gyrB fragments revealed the epidemic isolates to cluster with type strains of D. chrysanthemi, D. dianthicola, D. dadantii, P. atrosepticum, P. brasiliense, P. carotovorum, P. parmentieri, P. polaris, P. punjabense, and P. versatile. Genetic diversity within D. dianthicola strains was low, with one sequence type (ST1) identified in 17 of 19 strains. Pectobacterium parmentieri was more diverse, with ten sequence types detected among 37 of the 2015–2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.
Collapse
|
13
|
Boluk G, Arizala D, Dobhal S, Zhang J, Hu J, Alvarez AM, Arif M. Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated From Pineapple and Taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. FRONTIERS IN PLANT SCIENCE 2021; 12:663851. [PMID: 34456933 PMCID: PMC8386352 DOI: 10.3389/fpls.2021.663851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Dickeya zeae, a bacterial plant pathogen of the family Pectobacteriaceae, is responsible for a wide range of diseases on potato, maize, rice, banana, pineapple, taro, and ornamentals and significantly reduces crop production. D. zeae causes the soft rot of taro (Colocasia esculenta) and the heart rot of pineapple (Ananas comosus). In this study, we used Pacific Biosciences single-molecule real-time (SMRT) sequencing to sequence two high-quality complete genomes of novel strains of D. zeae: PL65 (size: 4.74997 MB; depth: 701x; GC: 53.6%) and A5410 (size: 4.7792 MB; depth: 558x; GC: 53.5%) isolated from economically important Hawaiian crops, taro, and pineapple, respectively. Additional complete genomes of D. zeae representing three additional hosts (philodendron, rice, and banana) and other species used for a taxonomic comparison were retrieved from the NCBI GenBank genome database. Genomic analyses indicated the truncated type III and IV secretion systems (T3SS and T4SS) in the taro strain, which only harbored one and two genes of T3SS and T4SS, respectively, and showed high heterogeneity in the type VI secretion system (T6SS). Unlike strain EC1, which was isolated from rice and recently reclassified as D. oryzae, neither the genome PL65 nor A5410 harbors the zeamine biosynthesis gene cluster, which plays a key role in virulence of other Dickeya species. The percentages of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the two genomes were 94.47 and 57.00, respectively. In this study, we compared the major virulence factors [plant cell wall-degrading extracellular enzymes and protease (Prt)] produced by D. zeae strains and evaluated the virulence on taro corms and pineapple leaves. Both strains produced Prts, pectate lyases (Pels), and cellulases but no significant quantitative differences were observed (p > 0.05) between the strains. All the strains produced symptoms on taro corms and pineapple leaves, but the strain PL65 produced symptoms more rapidly than others. Our study highlights the genetic constituents of pathogenicity determinants and genomic heterogeneity that will help to understand the virulence mechanisms and aggressiveness of this plant pathogen.
Collapse
Affiliation(s)
- Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jingxin Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
14
|
Affinibrenneria salicis gen. nov. sp. nov. isolated from Salix matsudana bark canker. Arch Microbiol 2021; 203:3473-3481. [PMID: 33903975 DOI: 10.1007/s00203-021-02323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
L3-3HAT, a Gram-negative-staining, facultatively anaerobic, motile bacterial strain, was isolated from the symptomatic bark of Salix matsudana canker in China. 16S rRNA gene analysis revealed that the novel strain shares the highest sequence similarity with Brenneria goodwinii FRB141T (95.5%). In phylogenetic trees based on four housekeeping genes (gyrB, rpoB, atpD, and infB) and the 16S rRNA gene sequence, the novel strain formed a separate branch from the five genera of the family Pectobacteriaceae (Lonsdalea, Brenneria, Dickeya, Pectobacterium, and Sodalis), suggesting that the novel strain should belong to a novel species of a novel genus within the family Pectobacteriaceae. The result was also supported by phylogenomics, amino acid identity and average nucleotide identity. The major fatty acids were C14:0, C16:0, C17:0 cyclo, and C19:0 cyclo ɷ8c. Genome analysis showed that the novel strain has a large genome (5.89 Mb) with 5,052 coding genes, including 181 virulence genes by searching the pathogen-host interactions database (PHI-base), indicating that the novel strain is a potential pathogen of plants and animals. Based on phenotypic and genotypic characteristics, the L3-3HAT strain represents a novel species of a novel genus in the Pectobacteriaceae family, for which the name Affinibrenneria salicis gen nov. sp. nov. is proposed. The strain type is L3-3HAT (= CFCC 15588T = LMG 31209T).
Collapse
|
15
|
European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms 2021; 9:microorganisms9040781. [PMID: 33917923 PMCID: PMC8068253 DOI: 10.3390/microorganisms9040781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Enterobacteria belonging to the Pectobacterium and Dickeya genera are responsible for soft rot and blackleg diseases occurring in many crops around the world. Since 2016, the number of described species has more than doubled. However, some new species, such as Pectobacterium punjabense, are often poorly characterized, and little is known about their genomic and phenotypic variation. Here, we explored several European culture collections and identified seven strains of P. punjabense. All were collected from potato blackleg symptoms, sometimes from a long time ago, i.e., the IFB5596 strain isolated almost 25 years ago. We showed that this species remains rare, with less than 0.24% of P. punjabense strains identified among pectinolytic bacteria present in the surveyed collections. The analysis of the genomic diversity revealed the non-clonal character of P. punjabense species. Furthermore, the strains showed aggressiveness differences. Finally, a qPCR Taqman assay was developed for rapid and specific strain characterization and for use in diagnostic programs.
Collapse
|
16
|
Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9020239. [PMID: 33498890 PMCID: PMC7912708 DOI: 10.3390/microorganisms9020239] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.
Collapse
|