1
|
Xie Y, Li F, Xie Q, Kong F, Xu Y, Ma Q, Wu W, Huang D, Xie X, Zhou S, Zhao Y, Huang X. Comprehensive genome analysis of two novel Saccharopolyspora strains- Saccharopolyspora montiporae sp. nov. and Saccharopolyspora galaxeae sp. nov. isolated from stony corals in Hainan. Front Microbiol 2024; 15:1432042. [PMID: 39606120 PMCID: PMC11599206 DOI: 10.3389/fmicb.2024.1432042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Marine actinomycetes exhibit a high level of biodiversity and possess significant potential for the production of high-value secondary metabolites. During the course of investigation of marine actinobacteria from corals, two Saccharopolyspora strains, namely, HNM0983T and HNM0986T, were isolated from stony corals collected from the coastal area of Hainan Island. The 16S ribosomal RNA (rRNA) gene sequence analysis revealed that these two strains are putative novel taxa of the genus Saccharopolyspora. Whole-genome sequencing comparisons further confirmed the two strains as belonging to two novel Saccharopolyspora species, which can be distinguished phenotypically and chemically from their current closest phylogenetic relatives. Some genomic information of the genus Saccharopolyspora was compared for evaluating the production capacity of secondary metabolites. A total of 519 biosynthetic gene clusters (BGCs) from the genus Saccharopolyspora were used for analysis, and terpene BGCs were found to be widespread and most abundant in this genus. In addition, abundant novel BGCs in the genus Saccharopolyspora are not clustered with the known BGCs in the database, indicating that the metabolites of the genus Saccharopolyspora deserve further exploration. On the basis of these presented results, Saccharopolyspora montiporae sp. nov. (type strain = HNM0983T = CCTCC AA 2020014T = KCTC 49526T) and Saccharopolyspora galaxeae sp. nov. (type strain = HNM0986T = CCTCC AA 2020011T = KCTC 49524T) are proposed as the names for the new strains, respectively.
Collapse
Affiliation(s)
- Yuhui Xie
- School of Life and Health Sciences, Hainan University, Haikou, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fenfa Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Qingyi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fandong Kong
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yun Xu
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Qingyun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenqiang Wu
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Dongyi Huang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xinqiang Xie
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuangqing Zhou
- School of Life and Health Sciences, Hainan University, Haikou, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Youxing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaolong Huang
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
2
|
Suphannarot A, Butdee W, Suriyachadkun C, Duangmal K, Mingma R. Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov., two novel actinobacteria isolated from mangrove sediments and leaves of halophyte Sesuvium portulacastrum in Thailand. Int J Syst Evol Microbiol 2024; 74. [PMID: 38805028 DOI: 10.1099/ijsem.0.006401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
A polyphasic approach was used to characterize two novel actinobacterial strains, designated PKS22-38T and LSe1-13T, which were isolated from mangrove soils and leaves of halophyte Sesuvium portulacastrum (L.), respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that they belonged to the genus Gordonia and were most closely related to three validly published species with similarities ranging from 98.6 to 98.1 %. The genomic DNA G+C contents of strains PKS22-38T and LSe1-13T were 67.3 and 67.2 mol%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 93.3 and 54.9 %, respectively, revealing that they are independent species. Meanwhile, the ANI and dDDH values between the two novel strains and closely related type strains were below 80.5 and 24.0 %, respectively. Strains PKS22-38T and LSe1-13T contained C16 : 0, C18 : 1 ω9c and C18 : 0 10-methyl (TBSA) as the major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the main phospholipids. The predominant menaquinone was MK-9(H2). Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strains PKS22-38T and LSe1-13T are considered to represent two novel species within the genus Gordonia, for which the names Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov. are proposed, with strain PKS22-38T (=TBRC 17540T=NBRC 116256T) and strain LSe1-13T (=TBRC 17706T=NBRC 116396T) as the type strains, respectively.
Collapse
Affiliation(s)
- Aekasit Suphannarot
- Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Waranya Butdee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Chanwit Suriyachadkun
- BIOTEC Culture Collection, Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Kannika Duangmal
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ratchanee Mingma
- Division of Microbiology, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
3
|
He Y, Lyu L, Hu Z, Yu Z, Shao Z. Gordonia tangerina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748478 DOI: 10.1099/ijsem.0.005632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A Gram-stain-positive, aerobic bacterium, designated GW1C4-4T, was isolated from the seawater sample from the tidal zone of Guanyinshan Coast, Xiamen, Fujian Province, PR China. The strain was reddish-orange, rod-shaped and non-motile. Cells of strain GW1C4-4T were oxidase-negative and catalase-positive. The strain could grow at 10-42 °C (optimum, 32-35 °C), pH 5-9 (optimum, pH 6) and with 0-10 % NaCl (w/v; optimum, 1 %). Phylogenetic analysis based on the 16S rRNA sequences indicated that strain GW1C4-4T belonged to the genus Gordonia, having the highest similarity to Gordonia mangrovi HNM0687T (98.5 %), followed by Gordonia bronchialis DSM 43247T (98.4 %). The G+C DNA content was 66.5 mol %. Average nucleotide identity and digital DNA-DNA hybridization values between strain GW1C4-4T and G. mangrovi HNM0687T were 85.8 and 30.0 %, respectively. The principal fatty acids of strain GW1C4-4T were C16 : 0, C18 : 0 10-methyl (TBSA) and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). MK-9 (H2) was the sole respiratory quinone. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unidentified lipid. Based on its phylogenetic, phenotypic, chemotaxonomic and genomic characteristics, it is proposed that strain GW1C4-4T represents a novel species within the genus Gordonia, for which the name Gordonia tangerina sp. nov. is proposed. The type strain is GW1C4-4T (=MCCC 1A18727T=KCTC 49729T).
Collapse
Affiliation(s)
- Yufei He
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China.,State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.,University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, PR China
| | - Ziyan Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
4
|
Riesco R, Rose JJA, Batinovic S, Petrovski S, Sánchez-Juanes F, Seviour RJ, Goodfellow M, Trujillo ME. Gordonia pseudamarae sp. nov., a home for novel actinobacteria isolated from stable foams on activated sludge wastewater treatment plants. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The taxonomic status of two
Gordonia
strains, designated BEN371 and CON9T, isolated from stable foams on activated sludge plants was the subject of a polyphasic study which also included the type strains of
Gordonia
species and three authenticated
Gordonia amarae
strains recovered from such foams. Phylogenetic analyses of 16S rRNA gene sequences showed that these isolates formed a compact cluster suggesting a well-supported lineage together with a second branch containing the
G. amarae
strains. A phylogenomic tree based on sequences of 92 core genes extracted from whole genome sequences of the isolates, the
G. amarae
strains and
Gordonia
type strains confirmed the assignment of the isolates and the
G. amarae
strains to separate but closely associated lineages. Average nucleotide index (ANI) and digital DNA–DNA hybridisation (dDDH) similarities showed that BEN371 and CON9T belonged to the same species and had chemotaxonomic and morphological features consistent with their assignment to the genus
Gordonia
. The isolates and the
G. amarae
strains were distinguished using a range of phenotypic features and by low ANI and dDDH values of 84.2 and 27.0 %, respectively. These data supplemented with associated genome characteristics show that BEN371 and CON9T represent a novel species of the genus
Gordonia
. The name proposed for members of this taxon is Gordonia pseudamarae sp. nov. with isolate CON9T (=DSM 43602T=JCM 35249T) as the type strain.
Collapse
Affiliation(s)
- Raúl Riesco
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
| | - Jayson J. A. Rose
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, CSIC, Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - Robert J. Seviour
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Sarkar B, Mandal S. Gordonia sp. BSTG01 isolated from Hevea brasiliensis plantation efficiently degrades polyisoprene (rubber). 3 Biotech 2021; 11:508. [PMID: 34881168 DOI: 10.1007/s13205-021-03063-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Polyisoprene is the principal constituent of rubber latex which has been estimated globally as one of the major solid wastes. Bacterial bioremediation of this solid waste remains a major point of interest for scientists. This study reports a Gram-positive, non-motile, non-spore-forming actinomycete Gordonia sp. BSTG01, isolated from the bark of Hevea brasiliensis of a rubber plantation garden can considerably degrade natural rubber (NR) and synthetic polyisoprene rubber (SR). Scanning electron microscopy showed adhesive colonization of strain BSTG01 on both natural and synthetic rubber surface, conflating into the rubber and forming a biofilm. Rubber-dependent growth of the strain was examined by the decrease of rubber mass and increase of its total protein content in a time-dependent manner. Degradation was also verified by Schiff's reagent which confirms the appearance of aldehydes in the culture media. Fourier transform infrared spectroscopy including the attenuated total reflectance with the NR and SR pieces overgrown by the isolate revealed variations of the overall chemicals arising on the polyisoprene backbone due to the degradation of rubber by the strain BSTG01. Isolate BSTG01 (MTCC 13159) is a strain of Gordonia and this is the first strain isolated from unexplored rubber plantation area with considerable rubber degradation properties. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03063-5.
Collapse
Affiliation(s)
- Biraj Sarkar
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|