1
|
Lin TY, Liu WT. Validation of 16S rRNA gene sequencing and metagenomics for evaluating microbial immigration in a methanogenic bioreactor. WATER RESEARCH 2023; 243:120358. [PMID: 37481999 DOI: 10.1016/j.watres.2023.120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
To quantitatively evaluate the impact of microbial immigration from an upstream community on the microbial assembly of a downstream community, an ecological genomics (ecogenomics)-based mass balance (EGMB) model coupled with 16S rRNA gene sequencing was previously developed. In this study, a mock community was used to further validate the EGMB models and demonstrate the feasibility of using metagenome-based EGMB model to reveal both microbial activity and function. The mock community consisting of Aeromonas, Escherichia, and Pseudomonas was fed into a lab-scale methanogenic bioreactor together with dissolved organic substrate. Using qPCR, 16S rRNA gene, 16S rRNA gene copy number normalization (GCN), and metagenome, results showed highly comparable community profiles in the feed. In the bioreactor, Aeromonas and Pseudomonas exhibited negative growth rates throughout the experiment by all approaches. Escherichia's growth rate was negative by most biomarkers but was slightly positive by 16S rRNA gene. Still, all approaches showed a decreasing trend toward negative in the growth rate of Escherichia as reactor operation time increased. Uncultivated populations of phyla Desulfobacterota, Chloroflexi, Actinobacteriota, and Spirochaetota were observed to increase in abundance, suggesting their contribution in degrading the feed biomass. Based on metabolic reconstruction of metagenomes, these populations possessed functions of hydrolysis, fermentation, fatty acid degradation, or acetate oxidation. Overall results supported the application of both 16S rRNA gene- and metagenome-based EGMB models to measure the growth rate of microbes in the bioreactor, and the latter had advantage in providing insights into the microbial functions of uncultivated populations.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Gam ZBA, Thioye A, Cayol JL, Postec A, Bartoli-Joseph M, Vandecasteele C, Erauso G, Labat M. Thermospira aquatica gen. nov., sp. nov., a novel thermophilic spirochete isolated from a Tunisian hot spring, and description of the novel family Thermospiraceae. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748411 DOI: 10.1099/ijsem.0.005690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel thermophilic, anaerobic bacterium, strain F1F22T, was isolated from hot spring water collected in northern Tunisia. The cells were non-motile, Gram-negative and helical with hooked ends, 0.5×10-32 µm in size. Growth of the strain was observed at 45-70 °C (optimum, 55 °C), in 0.0-1.0 % (w/v) NaCl (optimum without NaCl) and at pH 6.5-8.5 (optimum, pH 7.5). Yeast extract was required for growth, and the strain grew on glucose, sucrose and maltose. The major fatty acids were C16:0 (40.2 %), iso-C16: 0 (30.2 %) and C16 :0 DMA (14.5 %). The genome consisted of a circular chromosome (2.5 Mb) containing 2672 predicted protein-encoding genes with a G+C content of 43.15 mol %. Based on a comparative 16S rRNA gene sequence analysis, strain F1F22T formed a deeply branching lineage within the phylum Spirochaetota, class Spirochaetia, order Brevinematales, and had only low sequence similarity to other species of the phylum (lower than 83 %). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain F1F22T with Treponema caldarium DSM 7334T, Brevinema andersonii ATCC 43811T and Spirochaeta thermophila DSM 6578T showed values between 63.26 and 63.52 %, and between 20 and 25 %. Hence, we propose strain F1F22T as a representative of a novel family (Thermospiraceae fam. nov.), genus and species of Brevinematales: Thermospira aquatica gen. nov., sp. nov. (type strain F1F22T=JCM 31314T=DSM 101182T).
Collapse
Affiliation(s)
- Zouhaier Ben Ali Gam
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Abdoulaye Thioye
- Université Cheikh Anta Diop, Ecole Supérieure Polytechnique, Laboratoire de Microbiologie Appliquée et de Génie Industriel, BP 5005, Dakar-Fann, Dakar, Sénégal
| | - Jean-Luc Cayol
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Anne Postec
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Manon Bartoli-Joseph
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | | | - Gaël Erauso
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| | - Marc Labat
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Mediterranean Institute of Oceanography, 163 avenue de Luminy, F-13288, Marseille, France
| |
Collapse
|
3
|
Imachi H, Nobu MK, Miyazaki M, Tasumi E, Saito Y, Sakai S, Ogawara M, Ohashi A, Takai K. Cultivation of previously uncultured microorganisms with a continuous-flow down-flow hanging sponge (DHS) bioreactor, using a syntrophic archaeon culture obtained from deep marine sediment as a case study. Nat Protoc 2022; 17:2784-2814. [PMID: 36104596 DOI: 10.1038/s41596-022-00735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
In microbiology, cultivation is a central approach for uncovering novel physiology, ecology, and evolution of microorganisms, but conventional methods have left many microorganisms found in nature uncultured. To overcome the limitations of traditional methods and culture indigenous microorganisms, we applied a two-stage approach: enrichment/activation of indigenous organisms by using a continuous-flow down-flow hanging sponge bioreactor and subsequent selective batch cultivation. Here, we provide a protocol for this bioreactor-mediated technique using activation of deep marine sediment microorganisms and downstream isolation of a syntrophic co-culture containing an archaeon closely related to the eukaryote ancestor (Candidatus Promethearchaeum syntrophicum strain MK-D1) as an example. Both stages can easily be tailored to target other environments and organisms by modifying the inoculum, feed solution/gases, attachment material and/or cultivation media. We anaerobically incubate polyurethane sponges inoculated with deep-sea methane seep sediment in a reactor at 10 °C and feed anaerobic artificial seawater medium and methane. Once phylogenetically diverse and metabolically active microorganisms are adapted to synthetic conditions in the reactor, we transition to growing community samples in glass tubes with the above medium, simple substrates and selective compounds (e.g., antibiotics). To accommodate for the slow growth anticipated for target organisms, primary cultures can be incubated for ≥6-12 months and analyzed for community composition even when no cell turbidity is observed. One casamino acid- and antibiotic-amended culture prepared in this way led to the enrichment of uncultured archaea. Through successive transfer in vitro combined with molecular growth monitoring, we successfully obtained the target archaeon with its partner methanogen as a pure syntrophic co-culture.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yumi Saito
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sanae Sakai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Miyuki Ogawara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
4
|
Brune A, Song Y, Oren A, Paster BJ. A new family for 'termite gut treponemes': description of Breznakiellaceae fam. nov., Gracilinema caldarium gen. nov., comb. nov., Leadbettera azotonutricia gen. nov., comb. nov., Helmutkoenigia isoptericolens gen. nov., comb. nov., and Zuelzera stenostrepta gen. nov., comb. nov., and proposal of Rectinemataceae fam. nov. Int J Syst Evol Microbiol 2022; 72. [PMID: 35639582 DOI: 10.1099/ijsem.0.005439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intestinal tracts of termites are abundantly colonized by a diverse assemblage of spirochetes. Most of them belong to 'termite cluster I', a monophyletic group within the radiation of the genus Treponema that occurs exclusively in termite guts. Phylogenomic analysis revealed that members of the genus Treponema are extremely diverse and represent two separate, family-level lineages: the Treponemataceae sensu stricto, which comprise the majority of the validly described Treponema species, and a second lineage that comprises the remaining members of the genus Treponema, including all members of 'termite cluster I' from termites and the recently isolated Breznakiella homolactica from cockroaches. Here, we present the formal description of Breznakiellaceae fam. nov. and of the new genera required to accommodate the misplaced Treponema species in the new family as new combinations (Leadbettera azotonutricia, Gracilinema caldarium, Helmutkoenigia isoptericolens and Zuelzera stenostrepta). To avoid paraphyly of Treponemataceae, we propose Rectinemataceae fam. nov. to include the genus Rectinema.
Collapse
Affiliation(s)
- Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Yulin Song
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Bruce J Paster
- The Forsyth Institute, 245 First St., Cambridge, MA, USA
| |
Collapse
|