1
|
Wang Y, You H, Kong YH, Sun C, Wu LH, Kim SG, Lee JS, Xu L, Xu XW. Genomic-based taxonomic classification of the order Sphingomonadales. Int J Syst Evol Microbiol 2025; 75. [PMID: 40372931 DOI: 10.1099/ijsem.0.006769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
The order Sphingomonadales strains are globally distributed in various biomes and are renowned for their biodegradable and biosynthesis capabilities. At present, it consists of 4 families and 49 genera making it the third largest order within the class Alphaproteobacteria. However, their taxonomy remains complex, especially due to polyphyly in the family Sphingomonadaceae. In this study, we collected 429 Sphingomonadales type strain genomes, reconstructed robust phylogenomic relationships, and proposed delineation thresholds at the genus and family levels based on average amino acid identities (AAI) and evolutionary distances (ED). Based on the maximum-likelihood and Bayesian phylogenomic trees reconstructed by two molecular sets determined by orthologous sequence identity and the Genome Taxonomy Database, the consensus degree values were all higher than 90%, revealing that those phylogenomic trees had similar topological structures. By confirming monophyletic taxa and determining stable nodes, we reclassified the order Sphingomonadales into thirteen families including nine novel ones. AAI calculations indicated that the average intra-family AAI values ranged from 0.62 to 0.84, while inter-family ones were 0.51 to 0.60. ED summaries demonstrated that the average and median intra-family ED values were 0.16 to 0.57, and inter-family ones ranged from 0.50 to 1.22. Comparisons of AAI and ED values calculated by using genomic and phylogenetic analyses supported that those 13 families were significantly separated with p values < 2.2×10-16. Thus, it was speculated that the AAI and ED thresholds for distinguishing different families were <0.6 and >0.5, respectively. Additionally, we reclassified 163 species into new genera with their phylogenetic topologies, according to the previous genus AAI and ED boundaries of 0.7 and 0.4. Our study is the first genomic-based study of the order Sphingomonadales and will promote further insights into the evolution of this order.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Hao You
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Zhejiang University, Zhoushan 316021, PR China
| | - Yan-Hui Kong
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin-Huan Wu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology, Korean Collection for Type Cultures, Jeongeup 56212, Republic of Korea
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue-Wei Xu
- National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, PR China
| |
Collapse
|
2
|
Ikarashi T, Bandaranayake US, Watari T, Yamaguchi T, Hatamoto M. Unique gel-like colony forming bacterium Novosphingobium pituita sp. nov., isolated from a membrane bioreactor (MBR) treating sewage. Heliyon 2024; 10:e38795. [PMID: 39717744 PMCID: PMC11665390 DOI: 10.1016/j.heliyon.2024.e38795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/30/2024] [Indexed: 12/25/2024] Open
Abstract
A novel, gelatinous, colony-forming, rod-shaped bacterial strain, designated IK01T was isolated from biofilms formed on the membrane surface of a sewage-treating membrane bioreactor (MBR). Strain IK01T produced gelatinous and almost transparent colonies at lower medium concentrations. Fourier transform infrared analysis of the gelatinous colony matrix showed that the matrix could be a biofilm substance. This suggests that strain IK01T is a fouling-causing bacteria in the MBR. Furthermore, 16S rRNA gene sequence analysis showed that strain IK01T was phylogenetically placed in the genus Novosphingobium. The average nucleotide identity values for IK01T and the other 50 species of the genus Novosphingobium ranged from 78.5 to 83.9 %. Correspondingly, the estimated digital DNA-DNA hybridization values ranged from 20.8 to 24.4 %. The genomic DNA G + C content was 66.0 %. The predominant fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and C14:0 2-OH. A polar lipid profile revealed phosphatidylethanolamine, two unidentified phospholipids, and three aminoglycophospholipids as major compounds. The major respiratory quinone was ubiquinone Q-10. Genotypic, chemotaxonomic, and phenotypic analyses characterized the newly identified strain IK01T, as a novel species of the genus Novosphingobium, for which we propose the name Novosphingobium pituita sp. nov. The type strain is IK01T (NBRC 116408T = DSM 116658T).
Collapse
Affiliation(s)
- Tomoya Ikarashi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Uchini S. Bandaranayake
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| |
Collapse
|
3
|
Kang M, Van Le V, Ko SR, Lee SA, Choi DY, Oh HM, Ahn CY. Novosphingobium cyanobacteriorum sp. nov., isolated from a eutrophic reservoir during the Microcystis bloom period. Int J Syst Evol Microbiol 2023; 73. [PMID: 37737846 DOI: 10.1099/ijsem.0.006042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain, HBC54T, was isolated from periphyton during a Microcystis bloom. Based on the results of the 16S rRNA gene sequence analysis, strain HBC54T was closely related to Novosphingobium aerophilum 4Y4T (98.36 %), Novosphingobium aromaticivorans DSM 12444T (98.08 %), Novosphingobium huizhouense c7T (97.94 %), Novosphingobium percolationis c1T (97.65 %), Novosphingobium subterraneum DSM 12447T (97.58 %), Novosphingobium olei TW-4T (97.58 %) and Novosphingobium flavum UCT-28T (97.37 %). The average nucleotide identity and digital DNA-DNA hybridization values between HBC54T and its related type stains were below 78.97 and 23.7 %, which are lower than the threshold values for species delineation. The major fatty acids (>10.0 %) were identified as C14 : 0 2-OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and the respiratory quinone was ubiquinone Q-10. The main polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol and three unidentified phospholipids. The genomic DNA G+C content was 64.8 mol%. Strain HBC54T is considered to represent a novel species within the genus Novosphingobium, for which the name Novosphingobium cyanobacteriorum sp. nov. is proposed. The type strain is HBC54T (=KCTC 92033T=LMG 32427T).
Collapse
Affiliation(s)
- Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Ah Lee
- Office of Islands and Coastal Biology Research, Honam National Institute of Biological Resources (HNIBR), Mokpo 58792, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Srivastava A, Verma D. Urbanization led to the abundance of Gram-negative, chemo-organo-heterotrophs, and antibiotic resistance genes in the downstream regions of the Ganga River water of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27552-7. [PMID: 37217817 DOI: 10.1007/s11356-023-27552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The present investigation assesses the bacterial microbiome and antibiotic resistance genes (ARGs) of the river Ganga from Uttarakhand (upstream region; US group) and Uttar Pradesh (downstream region; DS group) regions using a 16S rRNA amplicon-based metagenomic approach. Gram-negative, aerobic, and chemo-organotrophic bacteria made up the majority of the bacterial genera during the overall analysis. Physicochemical analysis revealed a higher concentration of nitrate and phosphate in the downstream sites of the Ganga River. The prevalence of Gemmatimonas, Flavobacterium, Arenimonas, and Verrucomicrobia in the water of the DS region indicates a high organic load. Pseudomonas and Flavobacterium emerged as the most prevalent genera among the 35 significantly different shared genera (p-value < 0.05) in the US and DS regions, respectively. Overall antibiotic resistance analysis of the samples showed the dominance of β-lactam resistance (33.92%) followed by CAMP (cationic antimicrobial peptide) resistance (27.75%), and multidrug resistance (19.17%), vancomycin resistance (17.84%), and tetracycline resistance (0.77%). While comparing, the DS group exhibited a higher abundance of ARGs over the US group, where the CAMP resistance and β-lactam ARGs were dominant in the respective regions. The correlation (p-value < 0.05) analysis showed that most bacteria exhibit a significant correlation with tetracycline resistance followed by the phenicol antibiotic. The present findings draw attention to the need for regulated disposal of multiform human-derived wastes into the Ganga River to reduce the irrepressible ARGs dissemination.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
5
|
Le VV, Ko SR, Kang M, Park CY, Lee SA, Oh HM, Ahn CY. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119849. [PMID: 35952989 DOI: 10.1016/j.envpol.2022.119849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Microcystis blooms pose a major threat to the quality of drinking water. Cyanobactericidal bacteria have attracted much attention in the research community as a vehicle for controlling Microcystis blooms because of their ecological safety. Nonetheless, most studies on cyanobactericidal bacteria have been conducted on a laboratory scale but have not been scaled-up as field experiments. Thus, our understanding of the microbial response to cyanobactericidal bacteria in natural ecosystems remains elusive. Herein, we applied Paucibacter aquatile DH15 to control Microcystis blooms in a 1000 L mesocosm experiment and demonstrated its potential with the following results: (1) DH15 reduced Microcystis cell density by 90.7% within two days; (2) microcystins released by Microcystis death decreased to the control level in four days; (3) during the cyanobactericidal processes, the physicochemical parameters of water quality remained safe for other aquatic organisms; and (4) the cyanobactericidal processes promoted the growth of eukaryotic microalgae, replacing cyanobacteria. The cyanobactericidal processes accelerated turnover rates, decreased stability, and altered the functional profile of the microbial community. Network analysis demonstrated that this process resulted in more complex interactions between microbes. Overall, our findings suggest that strain DH15 could be considered a promising candidate for controlling Microcystis blooms in an eco-friendly manner.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Ah Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea; Environmental Safety Groups, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
Van Le V, Ko SR, Kang M, Oh HM, Ahn CY. Hymenobacter cyanobacteriorum sp. nov., isolated from a freshwater reservoir during the cyanobacterial bloom period. Arch Microbiol 2022; 204:369. [PMID: 35668215 DOI: 10.1007/s00203-022-02992-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
A Gram-negative, red-colored, and rod-shaped bacterial strain, DH14T, was isolated from a eutrophic reservoir. The 16S rRNA gene sequence analysis showed that strain DH14T was most closely related to Hymenobacter terrigena (98.3% similarity) and Hymenobacter terrae (98.1%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain DH14T and its related type strains were below 82.9% and 27.2%, respectively. Strain DH14T contained iso-C15:0 (32.6%), anteiso-C15:0 (14.0%), and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c) (25.8%) as major cellular fatty acids. The main polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids, and one unidentified lipid. The respiratory quinone was menaquinone 7 (MK-7). The genomic DNA G + C content was 62.1%. These evidences support the classification of strain DH14T as a novel species in the genus Hymenobacter, for which the name Hymenobacter cyanobacteriorum sp. nov. is proposed. The type strain is DH14T (= KCTC 92040T = LMG 32425T).
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
He X, Lu H, Hu W, Deng T, Gong X, Yang X, Song D, He M, Xu M. Novosphingobium percolationis sp. nov. and Novosphingobium huizhouense sp. nov., isolated from landfill leachate of a domestic waste treatment plant. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains designated as c1T and c7T, were isolated from the landfill leachate of a domestic waste treatment plant in Huizhou City, Guangdong Province, PR China. The cells of both strains were aerobic, rod-shaped, non-motile and formed yellow colonies on Reasoner’s 2A agar plates. Strain c1T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 7.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Strain c7T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 6.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Phylogenetic analyses revealed that strains c1T and c7T belong to the genus
Novosphingobium
. The 16S rRNA gene sequence similarities of strains c1T and c7T to the type strains of
Novosphingobium
species were 94.5–98.2 % and 94.3–99.1 %, respectively. The calculated pairwise average nucleotide identity values among strains c1T, c7T and the reference strains were in the range of 75.2–85.9 % and the calculated pairwise average amino acid identity values among strains c1T, c7T and reference strains were in the range of 72.0–88.3 %. Their major respiratory quinone was Q-10, and the major cellular fatty acids were C18 : 1
ω7c, C18 : 0, C16 : 1
ω7c, C16 : 0 and C14 : 0 2OH. The major polar lipids of strains c1T and c7T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, unidentified lipids and unidentified phospholipid. Based on phenotypic, chemotaxonomic, phylogenetic and genomic results from this study, strains c1T and c7T should represent two independent novel species of
Novosphingobium
, for which the names Novosphingobium percolationis sp. nov. (type strain c1T=GDMCC 1.2555T=KCTC 82826T) and Novosphingobium huizhouense sp. nov. (type strain c7T=GDMCC 1.2556T=KCTC 82827T) are proposed. The gene function annotation results of strains c1T and c7T suggest that they could play an important role in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiaoling He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Huibin Lu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Wenzhe Hu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tongchu Deng
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xiaofan Gong
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xunan Yang
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Da Song
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mei He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| |
Collapse
|