1
|
Lara AC, Kotrbová L, Keller M, Nouioui I, Neumann-Schaal M, Mast Y, Chroňáková A. Lentzea sokolovensis sp. nov., Lentzea kristufekii sp. nov. and Lentzea miocenica sp. nov., rare actinobacteria from Miocene lacustrine sediment of the Sokolov Coal Basin, Czech Republic. Int J Syst Evol Microbiol 2024; 74. [PMID: 38630118 DOI: 10.1099/ijsem.0.006335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).
Collapse
Affiliation(s)
- Ana Catalina Lara
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technická 5, 16628 Prague, Czech Republic
| | - Lucie Kotrbová
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Moritz Keller
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Yvonne Mast
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alica Chroňáková
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
González-Salazar LA, Quezada M, Rodríguez-Orduña L, Ramos-Aboites H, Capon RJ, Souza-Saldívar V, Barona-Gomez F, Licona-Cassani C. Biosynthetic novelty index reveals the metabolic potential of rare actinobacteria isolated from highly oligotrophic sediments. Microb Genom 2023; 9:mgen000921. [PMID: 36748531 PMCID: PMC9973853 DOI: 10.1099/mgen.0.000921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Calculations predict that testing of 5 000-10 000 molecules and >1 billion US dollars (£0.8 billion, £1=$1.2) are required for one single drug to come to the market. A solution to this problem is to establish more efficient protocols that reduce the high rate of re-isolation and continuous rediscovery of natural products during early stages of the drug development process. The study of 'rare actinobacteria' has emerged as a possible approach for increasing the discovery rate of drug leads from natural sources. Here, we define a simple genomic metric, defined as biosynthetic novelty index (BiNI), that can be used to rapidly rank strains according to the novelty of the subset of encoding biosynthetic clusters. By comparing a subset of high-quality genomes from strains of different taxonomic and ecological backgrounds, we used the BiNI score to support the notion that rare actinobacteria encode more biosynthetic gene cluster (BGC) novelty. In addition, we present the isolation and genomic characterization, focused on specialized metabolites and phenotypic screening, of two isolates belonging to genera Lentzea and Actinokineospora from a highly oligotrophic environment. Our results show that both strains harbour a unique subset of BGCs compared to other members of the genera Lentzea and Actinokineospora. These BGCs are responsible for potent antimicrobial and cytotoxic bioactivity. The experimental data and analysis presented in this study contribute to the knowledge of genome mining analysis in rare actinobacteria and, most importantly, can serve to direct sampling efforts to accelerate early stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Luz A González-Salazar
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Michelle Quezada
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lorena Rodríguez-Orduña
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valeria Souza-Saldívar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico.,Present address: Microbial Diversity and Specialized Metabolism Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Cuauhtémoc Licona-Cassani
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico.,Division of Integrative Biology, Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, Mexico
| |
Collapse
|
3
|
Zhang L, Jiao Y, Ling L, Wang H, Song W, Zhao T, Guo L, Xiang W, Zhao J, Wang X. Microbacterium stercoris sp. nov., an indole acetic acid-producing actinobacterium isolated from cow dung. Int J Syst Evol Microbiol 2021; 71. [PMID: 34762581 DOI: 10.1099/ijsem.0.005099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel growth-promoting and indole acetic acid-producing strain, designated NEAU-LLBT, was isolated from cow dung collected from Shangzhi, Heilongjiang Province, PR China. Cells of strain NEAU-LLBT were Gram-stain-positive, non-motile, aerobic and non-spore-forming. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NEAU-LLBT belonged to the genus Microbacterium. Strain NEAU-LLBT had high 16S rRNA sequence similarities of 98.81 and 98.41 % to Microbacterium paludicola DSM 16915T and Microbacterium marinilacus DSM 18904T, and less than 98 % to other members of the genus Microbacterium. Chemotaxonomic characteristics showed that MK-11 and MK-12 were detected as the predominant menaquinones. The peptidoglycan contained glutamic acid, aspartic acid, glycine, ornithine and a small amount of alanine, with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The major fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. The genomic DNA G+C content of strain NEAU-LLBT was 70.2 mol%. In addition, the average nucleotide identity values between strain NEAU-LLBT and its reference strains, M. paludicola DSM 16915T, M. marinilacus DSM 18904T and M. album SYSU D8007T, were found to be 81.1, 79.4 and 78.7 %, respectively, and the level of digital DNA-DNA hybridization between them were 23.8, 22.6 and 21.8 %, respectively. Based on the phenotypic, phylogenetic and genotypic data, strain NEAU-LLBT is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium stercoris sp. nov is proposed, with NEAU-LLBT (=CCTCC AA 2018028T=JCM 32660T) as the type strain.
Collapse
Affiliation(s)
- Lida Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Yanjie Jiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Ling Ling
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Tianxin Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|