1
|
Bidzhieva SK, Tourova TP, Grouzdev DS, Samigullina SR, Sokolova DS, Poltaraus AB, Avtukh AN, Tereshina VM, Mardanov AV, Zhaparov NS, Nazina TN. Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of Pseudodesulfovibrio karagichevae sp. nov. Microorganisms 2024; 12:2552. [PMID: 39770754 PMCID: PMC11678503 DOI: 10.3390/microorganisms12122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera Pseudodesulfovibrio, Oleidesulfovibrio, and Acetobacterium isolated from the formation water of the Karazhanbas oil field (Kazakhstan). Sulfate-reducing strain 9FUST revealed 98.9% similarity of the 16S rRNA gene sequence with the closely related strain 'Pseudodesulfovibrio methanolicus' 5S69T and was studied in detail to enhance the taxonomic resolution. Strain 9FUST grew optimally at 23-28 °C, pH 6.5, and 0-2% (w/v) NaCl. The strain used lactate, pyruvate, methanol, ethanol, fructose, ribose, and H2/CO2 (in the presence of acetate) as carbon and energy sources for sulfate reduction. Iso-C17:1 ω11, C15:0, iso-C15:0, and C16:0 were the predominant fatty acids. The genome is 4.20 Mbp with a G + C content of 64.0%. The average nucleotide identity and digital DNA-DNA hybridization values with Pseudodesulfovibrio spp. genomes were 72.5-91.6% (<95%) and 18.5-45.0% (<70%), respectively, and supported our conclusion that 9FUST (=VKM B-3654T = KCTC 25498T) belonged to a novel Pseudodesulfovibrio species, for which the name Pseudodesulfovibrio karagichevae sp. nov. is proposed. Pangenome analysis of sixteen Pseudodesulfovibrio species and functional annotation analysis of identified genes revealed complete modules of enzymes of the main metabolic pathways, characteristic of bacteria of this genus, and unique genes highlighting the adaptations of strain 9FUST in carbohydrate metabolism, nutrient uptake, and environmental stress response. Isolation of these strains expands our understanding of the diversity of sulfidogens in oil reservoirs and can be used to test the effectiveness of biocides used in an oil field.
Collapse
Affiliation(s)
- Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | | | - Salima R. Samigullina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander N. Avtukh
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow 142290, Russia;
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Nurlan S. Zhaparov
- Branch of the Limited Liability Partnership “KazMunaiGas Engineering”, Aktau 130000, Kazakhstan;
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| |
Collapse
|
2
|
Bidzhieva SK, Tourova TP, Kadnikov VV, Samigullina SR, Sokolova DS, Poltaraus AB, Avtukh AN, Tereshina VM, Beletsky AV, Mardanov AV, Nazina TN. Phenotypic and Genomic Characterization of a Sulfate-Reducing Bacterium Pseudodesulfovibrio methanolicus sp. nov. Isolated from a Petroleum Reservoir in Russia. BIOLOGY 2024; 13:800. [PMID: 39452109 PMCID: PMC11505543 DOI: 10.3390/biology13100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
The search for the microorganisms responsible for sulfide formation and corrosion of steel equipment in the oil fields of Tatarstan (Russia) resulted in the isolation of a new halotolerant strictly anaerobic sulfate-reducing bacterium, strain 5S69T. The cells were motile curved Gram-negative rods. Optimal growth was observed in the presence of 2.0-4.0% (w/v) NaCl, at pH 6.5, and at 23-28 °C under sulfate-reducing conditions. The isolate was capable of chemoorganotrophic growth with sulfate and other sulfoxides as electron acceptors, resulting in sulfide formation; and of pyruvate fermentation resulting in formation of H2 and acetate. The strain utilized lactate, pyruvate, ethanol, methanol, fumarate, and fructose, as well as H2/CO2/acetate for sulfate reduction. The genome size of the type strain 5S69T was 4.16 Mb with a G + C content of 63.0 mol%. On the basis of unique physiological properties and results of the 16S rRNA gene-based phylogenetic analysis, phylogenomic analysis of the 120 conserved single copy proteins and genomic indexes (ANI, AAI, and dDDH), assigning the type strain 5S69T ((VKM B-3653T = KCTC 25499T) to a new species within the genus Pseudodesulfovibrio, is suggested, with the proposed name Pseudodesulfovibrio methanolicus sp. nov. Genome analysis of the new isolate showed several genes involved in sulfate reduction and its sulfide-producing potential in oil fields with high saline formation water.
Collapse
Affiliation(s)
- Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Tatyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Salima R. Samigullina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander N. Avtukh
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia;
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.K.B.); (T.P.T.); (S.R.S.); (D.S.S.); (V.M.T.)
| |
Collapse
|
3
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
4
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
5
|
Gutensohn M, Schaefer JK, Yunda E, Skyllberg U, Björn E. The Combined Effect of Hg(II) Speciation, Thiol Metabolism, and Cell Physiology on Methylmercury Formation by Geobacter sulfurreducens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7185-7195. [PMID: 37098211 PMCID: PMC10173453 DOI: 10.1021/acs.est.3c00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by Geobacter sulfurreducens. We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations. Cysteine additions initially (0-2 h) enhanced MeHg formation by two mechanisms: (i) altering the Hg(II) partitioning from the cellular to the dissolved phase and/or (ii) shifting the chemical speciation of dissolved Hg(II) in favor of the Hg(Cys)2 complex. Nutrient additions increased MeHg formation by enhancing cell metabolism. These two effects were, however, not additive since cysteine was largely metabolized to penicillamine (PEN) over time at a rate that increased with nutrient addition. These processes shifted the speciation of dissolved Hg(II) from complexes with relatively high availability, Hg(Cys)2, to complexes with lower availability, Hg(PEN)2, for methylation. This thiol conversion by the cells thereby contributed to stalled MeHg formation after 2-6 h Hg(II) exposure. Overall, our results showed a complex influence of thiol metabolism on microbial MeHg formation and suggest that the conversion of cysteine to penicillamine may partly suppress MeHg formation in cysteine-rich environments like natural biofilms.
Collapse
Affiliation(s)
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Elena Yunda
- Department of Chemistry, Umeå University, SE- 90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE- 90187 Umeå, Sweden
| |
Collapse
|
6
|
Kondo R. Pseudodesulfovibrio nedwellii sp. nov., a mesophilic sulphate-reducing bacterium isolated from a xenic culture of an anaerobic heterolobosean protist. Int J Syst Evol Microbiol 2023; 73. [PMID: 37115616 DOI: 10.1099/ijsem.0.005826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
A novel sulphate-reducing bacterium, strain SYKT, was isolated from a xenic culture of an anaerobic protist obtained from a sulphidogenic sediment of the saline Lake Hiruga in Fukui, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that SYKT clustered with the members of the genus Pseudodesulfovibrio. The closest relative of strain SYKT was Pseudodesulfovibrio sediminis SF6T, with 16S rRNA gene sequence identity of 97.43 %. Digital DNA-DNA hybridisation and average nucleotide identity values between SYKT and species of the genus Pseudodesulfovibrio fell below the respective thresholds for species delineation, indicating that SYKT represents a novel species of the genus Pseudodesulfovibrio. Cells measured 1.7-3.7×0.2-0.5 µm in size and were Gram-stain-negative, obligately anaerobic, motile by means of a single polar flagellum and had a curved rod or sigmoid shape. Cell growth was observed under saline conditions from pH 6.0 to 9.5 (optimum pH 8.0-9.0) and at a temperature of 10-30 °C (optimum 25 °C). SYKT used lactate, pyruvate, fumarate, formate and H2 as electron donors. It used sulphate, sulphite, thiosulphate and sulphur as terminal electron acceptors. Pyruvate and fumarate were fermented. Major cellular fatty acids were anteiso-C15 : 0, C16 : 0, anteiso-C17 : 1ω9c, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The DNA G+C content of SYKT was 49.4 mol%. On the basis of the the genetic and phenotypic features, SYKT was determined to represent a novel species of the genus Pseudodesulfovibrio for which the name Pseudodesulfovibrio nedwellii sp. nov. is proposed with type strain SYKT (=DSM 114958T=JCM 35746T).
Collapse
Affiliation(s)
- Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| |
Collapse
|
7
|
Takahashi A, Kojima H, Watanabe M, Fukui M. Pseudodesulfovibrio sediminis sp. nov., a mesophilic and neutrophilic sulfate-reducing bacterium isolated from sediment of a brackish lake. Arch Microbiol 2022; 204:307. [PMID: 35532841 DOI: 10.1007/s00203-022-02870-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
Abstract
A novel mesophilic and neutrophilic sulfate-reducing bacterium, strain SF6T, was isolated from sediment of a brackish lake in Japan. Cells of strain SF6T were motile and rod-shaped with length of 1.2-2.5 μm and width of 0.6-0.9 μm. Growth was observed at 10-37 °C with an optimum growth temperature of 28 °C. The pH range for growth was 5.8-8.2 with an optimum pH of 7.0. The most predominant fatty acid was anteiso-C15:0. Under sulfate-reducing conditions, strain SF6T utilized lactate, ethanol and glucose as growth substrate. Chemolithoautotrophic growth on H2 was not observed, although H2 was used as electron donor. Fermentative growth occurred on pyruvate. As electron acceptor, sulfate, sulfite, thiosulfate and nitrate supported heterotrophic growth of the strain. The complete genome of strain SF6T is composed of a circular chromosome with length of 3.8 Mbp and G+C content of 54 mol%. Analyses of the 16S rRNA gene and whole genome sequence indicated that strain SF6T belongs to the genus Pseudodesulfovibrio but distinct form all existing species in the genus. On the basis of its genomic and phenotypic properties, strain SF6T (= DSM111931T = NBRC 114895T) is proposed as the type strain of a new species, with name of Pseudodesulfovibrio sediminis sp. nov.
Collapse
Affiliation(s)
- Ayaka Takahashi
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan.,The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Miho Watanabe
- Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University, Shimo-Shinjyo Nakano, Akita, 010-0195, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
8
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Isokpehi RD, McInnis DS, Destefano AM, Johnson GS, Walker AD, Hall YA, Mapp BW, Johnson MO, Simmons SS. Bioinformatics Investigations of Universal Stress Proteins from Mercury-Methylating Desulfovibrionaceae. Microorganisms 2021; 9:microorganisms9081780. [PMID: 34442859 PMCID: PMC8401546 DOI: 10.3390/microorganisms9081780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
The presence of methylmercury in aquatic environments and marine food sources is of global concern. The chemical reaction for the addition of a methyl group to inorganic mercury occurs in diverse bacterial taxonomic groups including the Gram-negative, sulfate-reducing Desulfovibrionaceae family that inhabit extreme aquatic environments. The availability of whole-genome sequence datasets for members of the Desulfovibrionaceae presents opportunities to understand the microbial mechanisms that contribute to methylmercury production in extreme aquatic environments. We have applied bioinformatics resources and developed visual analytics resources to categorize a collection of 719 putative universal stress protein (USP) sequences predicted from 93 genomes of Desulfovibrionaceae. We have focused our bioinformatics investigations on protein sequence analytics by developing interactive visualizations to categorize Desulfovibrionaceae universal stress proteins by protein domain composition and functionally important amino acids. We identified 651 Desulfovibrionaceae universal stress protein sequences, of which 488 sequences had only one USP domain and 163 had two USP domains. The 488 single USP domain sequences were further categorized into 340 sequences with ATP-binding motif and 148 sequences without ATP-binding motif. The 163 double USP domain sequences were categorized into (1) both USP domains with ATP-binding motif (3 sequences); (2) both USP domains without ATP-binding motif (138 sequences); and (3) one USP domain with ATP-binding motif (21 sequences). We developed visual analytics resources to facilitate the investigation of these categories of datasets in the presence or absence of the mercury-methylating gene pair (hgcAB). Future research could utilize these functional categories to investigate the participation of universal stress proteins in the bacterial cellular uptake of inorganic mercury and methylmercury production, especially in anaerobic aquatic environments.
Collapse
Affiliation(s)
- Raphael D. Isokpehi
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
- Correspondence:
| | - Dominique S. McInnis
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Antoinette M. Destefano
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Gabrielle S. Johnson
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Akimio D. Walker
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Yessenia A. Hall
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Baraka W. Mapp
- College of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, FL 32114, USA; (D.S.M.); (A.M.D.); (G.S.J.); (A.D.W.); (Y.A.H.); (B.W.M.)
| | - Matilda O. Johnson
- College of Nursing and Health Sciences, Bethune-Cookman University, Daytona Beach, FL 32114, USA;
| | - Shaneka S. Simmons
- Department of Science and Mathematics, Jarvis Christian College, Hawkins, TX 75765, USA;
| |
Collapse
|
11
|
Pseudodesulfovibrio alkaliphilus, sp. nov., an alkaliphilic sulfate-reducing bacterium isolated from a terrestrial mud volcano. Antonie van Leeuwenhoek 2021; 114:1387-1397. [PMID: 34212258 DOI: 10.1007/s10482-021-01608-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The diversity of anaerobic microorganisms in terrestrial mud volcanoes is largely unexplored. Here we report the isolation of a novel sulfate-reducing alkaliphilic bacterium (strain F-1T) from a terrestrial mud volcano located at the Taman peninsula, Russia. Cells of strain F-1T were Gram-negative motile vibrios with a single polar flagellum; 2.0-4.0 µm in length and 0.5 µm in diameter. The temperature range for growth was 6-37 °C, with an optimum at 24 °C. The pH range for growth was 7.0-10.5, with an optimum at pH 9.5. Strain F-1T utilized lactate, pyruvate, and molecular hydrogen as electron donors and sulfate, sulfite, thiosulfate, elemental sulfur, fumarate or arsenate as electron acceptors. In the presence of sulfate, the end products of lactate oxidation were acetate, H2S and CO2. Lactate and pyruvate could also be fermented. The major product of lactate fermentation was acetate. The main cellular fatty acids were anteiso-C15:0, C16:0, C18:0, and iso-C17:1ω8. Phylogenetic analysis revealed that strain F-1T was most closely related to Pseudodesulfovibrio aespoeensis (98.05% similarity). The total size of the genome of the novel isolate was 3.23 Mb and the genomic DNA G + C content was 61.93 mol%. The genome contained all genes essential for dissimilatory sulfate reduction. We propose to assign strain F-1T to the genus Pseudodesulfovibrio, as a new species, Pseudodesulfovibrio alkaliphilus sp. nov. The type strain is F-1T (= KCTC 15918T = VKM B-3405T).
Collapse
|