1
|
Dobhal S, Hugouvieux-Cotte-Pattat N, Arizala D, Sari GB, Chuang SC, Alvarez AM, Arif M. Dickeya ananae sp. nov., pectinolytic bacterium isolated from pineapple ( Ananas comosus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620964. [PMID: 39554176 PMCID: PMC11565860 DOI: 10.1101/2024.10.29.620964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Recently, species clustering within Dickeya zeae has been identified as complex, encompassing validly published names, including D. oryzae and D. parazeae, with some strains potentially delineating new species. In this study, genomes of strains isolated from a bacterial heart rot outbreak in pineapple (Ananas comosus var. comosus) on Oahu, Hawaii, along with two strains from pineapple in Malaysia, were sequenced. Orthologous average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the sequenced genomes ranged from 98.93-99.9% and 91.8-99.9%, respectively, supporting the classification of seven strains within the same species. Comparisons of ANI and dDDH values between these seven strains and type strains of D. zeae, D. parazeae, and D. oryzae ranged from 94.4-95.9% and 57.2-66.5%, respectively. These values fall below the proposed boundaries for new species designation, supporting the delineation of a novel species. Phylogenetic analyses, including 16S rRNA, gapA, multi-locus sequence analysis (MLSA) of 10 housekeeping genes, whole-genome, and pangenome analyses, were concordant and revealed a distinct monophyletic clade, separating these strains from other members of the D. zeae complex, with D. oryzae as the closest relative. Notably, a nitrogen fixation gene cluster comprising 28 genes, similar to the Klebsiella spp. nitrogenase gene cluster, was found in the genome of the seven pineapple strains. Based on polyphasic approaches, including ANI, dDDH, biochemical, physiological, and phylogenomic analyses, we propose the reclassification in a new species of the five pineapple strains from Hawaii A5391, A5410T, A5611, A6136, and A6137, together with the two pineapple strains from Malaysia CFBP 1272 and CFBP 1278, previously classified as D. zeae. We propose the name Dickeya ananae sp. nov. for this taxon, represented by the type strain A5410T (= ICMP 25020T = LMG 33197T).
Collapse
Affiliation(s)
- Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Gamze Boluk Sari
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Shu-Cheng Chuang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
2
|
Babinska-Wensierska W, Motyka-Pomagruk A, Fondi M, Misztak AE, Mengoni A, Lojkowska E. Differences in the constituents of bacterial microbiota of soils collected from two fields of diverse potato blackleg and soft rot diseases incidences, a case study. Sci Rep 2024; 14:18802. [PMID: 39138329 PMCID: PMC11322387 DOI: 10.1038/s41598-024-69213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.
Collapse
Affiliation(s)
- Weronika Babinska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Marco Fondi
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Agnieszka Emilia Misztak
- Génétique et Physiologie des Microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland.
| |
Collapse
|
3
|
Vasilyeva AA, Evseev PV, Ignatov AN, Dzhalilov FSU. Pectobacterium punjabense Causing Blackleg and Soft Rot of Potato: The First Report in the Russian Federation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2144. [PMID: 39124263 PMCID: PMC11313954 DOI: 10.3390/plants13152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Phytopathogenic bacteria of the genus Pectobacterium are responsible for several diseases that affect potato (Solanum tuberosum L.) production worldwide, including blackleg and tuber soft rot. These bacteria are highly diverse, with over 17 different species currently identified. However, some of the recently described species, such as Pectobacterium punjabense, are still poorly understood. In this study, we focused on P. punjabense isolates collected from diseased potato tubers in Russia in 2021. Whole-genome sequencing was used to characterise the genomic diversity of the pathogen and determine the biochemical profiles of the isolated bacteria. The ability of these isolates to cause soft rot symptoms was tested. A comparative assessment of the potential pathogenicity of the Pectobacterium isolates was conducted by infecting potato tubers and measuring the accumulation of biomass in a liquid medium during cultivation at different temperatures. A TaqMan qPCR assay was developed for the highly sensitive and specific characterisation of P. punjabense strains, which can be used in diagnostic systems. This is the first report on P. punjabense causing potato disease in the Russian Federation.
Collapse
Affiliation(s)
- Anna A. Vasilyeva
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
| | - Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexandr N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.N.I.)
| |
Collapse
|
4
|
Tang WC, Wang LH, Chan JJ, Goh RP, Wu YF, Chu CC. Inter- and Intra-Specific Variations in Phenotypic Traits of Pectobacterium Strains Isolated from Diverse Eudicots and Monocots in Taiwan. PLANT DISEASE 2024; 108:2410-2421. [PMID: 38506909 DOI: 10.1094/pdis-10-23-2130-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Pectobacterium spp. are phytopathogenic bacteria whose phylogeny has been continuously revised throughout the years. Previous studies on Pectobacterium's phenotypic diversity often analyzed strains obtained from specific crops or adopted outdated Pectobacterium classification systems. Therefore, a current perspective on trait variations in Pectobacterium species or strains infecting more diverse plant species is limited. This study conducted phylogenetic and phenotypic analyses on strains isolated from eight eudicot and four monocot families in Taiwan. Phylogenetic analysis on 78 strains identified six recognized species, namely, P. brasiliense, P. aroidearum, P. actinidiae, P. colocasium, P. carotovorum, and P. versatile. Among these, the first two were the most predominant species. Patterns suggesting varying host preferences among bacterial species were detected; most P. aroidearum strains were isolated from monocots, whereas P. brasiliense and P. actinidiae tended to exhibit preferences for eudicots. Physiological tests and Biolog analyses conducted on representative strains of each species revealed great within-species phenotypic variations. Despite these strain-level variations, a combination of indole production and phosphatase activity tests was capable of distinguishing all representative strains of P. brasiliense from those of other identified species. Inoculation assays on potato, bok choy, calla lily, and onion showed inter- and intra-specific heterogeneities in the tested strains' maceration potentials. Virulence patterns across Pectobacterium species and strains differed depending on the inoculated host. Altogether, the findings from this work expand the understanding of Pectobacterium's phenotypic diversity and provide implications for pathogen identification and management.
Collapse
Affiliation(s)
- Wen-Chien Tang
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Liang-Hsuan Wang
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Jiun-Jie Chan
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Reun-Ping Goh
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yea-Fang Wu
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, Tainan 71246, Taiwan
| | - Chia-Ching Chu
- Department of Plant Pathology, National Chung Hsing University, Taichung City 40227, Taiwan
| |
Collapse
|
5
|
Hugouvieux-Cotte-Pattat N, Flandrois JP, Briolay J, Reverchon S, Brochier-Armanet C. Description of a new genus of the Pectobacteriaceae family isolated from water in coastal brackish wetlands of the French Camargue region, Prodigiosinella gen. nov., including the new species Prodigiosinella aquatilis sp. nov. Syst Appl Microbiol 2024; 47:126497. [PMID: 38402653 DOI: 10.1016/j.syapm.2024.126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
The Pectobacteriaceae family comprises plant pathogens able to provoke diverse diseases, including plant maceration due to the production of pectinases disrupting the plant cell wall. To better understand their diversity, a survey of pectinolytic bacteria was performed in brackish lakes of the French region La Camargue near the Mediterranean Sea. The genome of six atypical isolates was sequenced; their size is around 4.8 to 5.0 Mb, including a plasmid of 59 to 61 kb; their G+C values range from 49.1 to 49.3 mol%. Phylogenetic analyses indicated that the novel strains form a new clade of Pectobacteriaceae that branches at the basis of the group encompassing the genera Lonsdalea, Musicola, and Dickeya. Based on phenotypic, genomic and phylogenetic characteristics, we propose the creation of a new genus with the name Prodigiosinella gen. nov. Both the phenotypic and phylogenetic analyses separated the strains into two distinct subgroups, G1 and G2. The type strain LS101T (CFBP 8826T = LMG 32072T) and strain CE70 (CFBP 9054 = LMG 32867) are representative G1 and G2 members, respectively. Three genomic methods were used to analyze DNA-DNA relatedness: digital DNA-DNA hybridization (isDDH), average nucleotide identity (ANI), and genome alignment fraction (AF). They revealed a close relationship between genomes of the two groups, supporting their appurtenance to a same species for which we propose the name Prodigiosinella aquatilis sp. nov. Four strains previously designated as Serratia sp. (ATCC 39006), Brenneria "ulupoensis" (K61) or Erwinia sp. (MK01 and MK09) belong to the new genus Prodigiosinella.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, CNRS UMR 5240, INSA de Lyon, Université Claude Bernard Lyon 1, Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France.
| | - Jean-Pierre Flandrois
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne F-69621, France.
| | - Jérôme Briolay
- Université Claude Bernard Lyon 1, CNRS FR 3728 BioEEnViS, plateforme DTAMB, F-69621 Villeurbanne, France.
| | - Sylvie Reverchon
- Université de Lyon, CNRS UMR 5240, INSA de Lyon, Université Claude Bernard Lyon 1, Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France.
| | | |
Collapse
|
6
|
Ben Moussa H, Pédron J, Hugouvieux-Cotte-Pattat N, Barny MA. Two species with a peculiar evolution within the genus Pectobacterium suggest adaptation to a new environmental niche. Environ Microbiol 2023; 25:2465-2480. [PMID: 37550252 DOI: 10.1111/1462-2920.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | | | - Marie-Anne Barny
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| |
Collapse
|
7
|
Su Y, Li X, Li L, Lukianova A, Tokmakova A, Chen C, Fu L, Tian Y, Shi Y, Xie J, Miroshnikov KA, Yang J, Xie H. Occurrence, Characteristics, and qPCR-Based Identification of Pectobacterium versatile Causing Soft Rot of Chinese Cabbage in China. PLANT DISEASE 2023; 107:2751-2762. [PMID: 36973901 DOI: 10.1094/pdis-12-22-2770-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pectobacterium is one of the most important genera of phytopathogenic bacteria. It can cause soft-rot diseases on a wide range of plant species across the world. In this study, three Pectobacterium strains (KC01, KC02, and KC03) were isolated from soft-rotted Chinese cabbage in Beijing, China. These three strains were identified as Pectobacterium versatile based on phylogenetic analysis of Pectobacterium 16S ribosomal RNA, pmrA, and 504 Pectobacterium core genes, as well as a genomic average nucleotide identity analysis. Their biochemical characteristics were found to be similar to the P. versatile type strain ICMP9168T but differed in response to citric acid, stachyose, D-glucuronic acid, dextrin, and N-acetyl-β-D-mannosamine. All of the tested P. versatile strains showed different carbohydrate utilization abilities compared with P. carotovorum and P. odoriferum, particularly in their ability to utilize D-arabitol, L-rhamnose, and L-serine. Under laboratory conditions, the maceration ability of P. versatile on Chinese cabbage was the highest at 28°C, compared with those at 13, 28, 23, and 33°C. Additionally, P. versatile could infect all of the 17 known Pectobacterium host plants, except for Welsh onion (Allium fistulosum). A SYBR Green quantitative PCR (qPCR) detection system was developed to distinguish P. versatile from other soft-rot bacteria based on the combined performance of melting curve (with a single melting peak at around 85°C) and fluorescence curve (with cycle threshold <30) when the bacterial genomic DNA concentration was in the range of 10 pg/µl to 10 ng/µl. This study is the first to report the presence of P. versatile on Chinese cabbage in China, as well as a specific and sensitive qPCR assay that can be used to quickly identify P. versatile. The work contributes to a better understanding of P. versatile and will facilitate the effective diagnosis of soft-rot disease, ultimately benefitting commercial crop production.
Collapse
Affiliation(s)
- Yanyan Su
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoying Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Changlong Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lu Fu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Tian
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Jungang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Xie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
Hong SM, Ten LN, Park KT, Back CG, Waleron M, Kang IK, Lee SY, Jung HY. Pectobacterium jejuense sp. nov. Isolated from Cucumber Stem Tissue. Curr Microbiol 2023; 80:308. [PMID: 37528256 DOI: 10.1007/s00284-023-03419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
A single Pectobacterium-like strain named 13-115T was isolated from a specimen of diseased cucumber stem tissue collected on Jeju Island, South Korea. The strain presented a rod-like shape and was negative for Gram staining. When grown on R2A medium at 25 °C, strain 13-115T formed round, convex and white colonies. This strain showed growth at temperatures ranging from 10 to 30 °C and tolerated a pH range of 6-9. The strain could also tolerate NaCl concentrations up to 5%. Analysis of the 16S rRNA gene sequence revealed that strain 13-115T exhibited similarity of over 99% with Pectobacterium brasiliense, P. carotovorum, P. polaris, and P. parvum. By conducting multilocus sequence analyses using dnaX, leuS, and recA genes, a separate phylogenetic lineage was discovered between strain 13-115T and other members of the genus Pectobacterium. Moreover, the strain showed relatively low in silico DNA-DNA hybridization (<60.6%) and average nucleotide identity (ANI) (<94.9%) values with recognized Pectobacterium species. The isolate has a genome size of 5,069,478 bp and a genomic G + C content of 52.04 mol%. Major fatty acids identified in the strain included C16:0 (28.99%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c; 28.85%), and C18:1 ω7c (19.01%). Pathogenicity assay confirmed that the novel strain induced soft rot symptoms in cucumber plants and Koch's postulates were fulfilled. Molecular analysis and phenotypic data indicated that strain 13-115T could be classified as a new species within the Pectobacterium genus, which has been named Pectobacterium jejuense. The type strain is 13-115T (= KCTC 92800T = JCM 35940T).
Collapse
Affiliation(s)
- Soo-Min Hong
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Leonid N Ten
- Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoung-Taek Park
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang-Gi Back
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Malgorzata Waleron
- Intercollegiate Faculty of Biotechnology UG and MUG, 58 Abrahama Street, 80-307, Gdansk, Poland
| | - In-Kyu Kang
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Institute of Plant Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Han W, Wang J, Pirhonen M, Pan Y, Qin J, Zhang S, Zhu J, Yang Z. Identification and characterization of opportunistic pathogen Pectobacterium polonicum causing potato blackleg in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1097741. [PMID: 36938006 PMCID: PMC10020715 DOI: 10.3389/fpls.2023.1097741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Blackleg and aerial stem rot of potato (Solanum tuberosum L.), caused by soft rot enterobacteria of the genera Pectobacterium and Dickeya, has recently increased years in Hebei Province, China. Field surveys were performed during the 2021 potato growing season in Hebei to identify and characterize bacterial pathogens. Sixteen potato plants showing blackleg or aerial stem rot were collected from three potato-producing areas, and ten representative pectinolytic bacteria were isolated from symptomatic plants. 16S rDNA sequencing and multilocus sequence analysis were performed to determine the taxonomic position of the bacterial isolates. The isolates belonged to the genus Pectobacterium, including Pectobacterium atrosepticum, Pectobacterium carotovorum, Pectobacterium brasiliense, and Pectobacterium parmentieri. The exceptions were isolates BY21311 and BY21312, which belonged to a new species of Pectobacterium polonicum previously found in groundwater. The taxonomy of isolate BY21311 was confirmed using whole genome-based analysis. P. polonicum has only been identified in potato plants on one farm in Baoding region in China. Isolates BY21311 and BY21312 displayed similar physiological and biochemical traits to the type strain DPMP315T. Artificial inoculation assays revealed that isolate BY21311 fulfilled Koch's postulates for potato blackleg. These findings represent the first time P. polonicum, a water-associated Pectobacterium species may be the cause of blackleg in the field. Interestingly, P. polonicum BY21311 has reduced ability to macerate potato tubers when compared to P. atrosepticum, P. brasiliense, P. versatile, and P. parvum, which is more virulent in tubers than the type strain DPMP315T. The host range of isolate BY21311 was determined by injection method, which can impregnate five plants. Although the genome of isolate BY21311 harbors gene clusters encoding a type III secretion system, it did not elicit a hypersensitive response (HR) in Nicotiana benthamiana or N. tabacum leaves. T3SS effector AvrE and T4SS effector PilN were obtained by predicting isolate BY21311 genome. P. polonicum appears to show significant variations in gene content between two genomes, and gene content varies between isolates BY21311 and DPMP315T, with strain specific-genes involved in many aspects, including lipopolysaccharide biosynthesis, substrate translocation, T4SS and T6SS among others, suggesting that isolates BY21311 and DPMP315T might represent distinct clades within the species.
Collapse
Affiliation(s)
- Wanxin Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingxin Qin
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shangqing Zhang
- Institute of Plant Protection, Tangshan Academy of Agricultural Sciences, Tangshan, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Ben Moussa H, Bertrand C, Rochelle-Newall E, Fiorini S, Pédron J, Barny MA. The Diversity and Abundance of Soft Rot Pectobacteriaceae Along the Durance River Stream in the Southeast of France Revealed by Multiple Seasonal Surveys. PHYTOPATHOLOGY 2022; 112:1676-1685. [PMID: 35224981 DOI: 10.1094/phyto-12-21-0515-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although irrigation water is frequently assessed for the presence of plant pathogens, large spatial and temporal surveys that provide clues on the diversity and circulation of pathogens are missing. We evaluate the diversity of soft rot Pectobacteriaceae (SRP) of the genera Dickeya and Pectobacterium over 2 years in a temperate, mixed-use watershed. The abundance of isolated strains correlates with the agricultural gradient along the watershed with a positive correlation found with temperature, nitrate, and dissolved organic carbon water concentration. We characterized 582 strains by amplification and sequencing of the gapA gene. Multilocus sequence analysis, performed with three housekeeping genes for 99 strains, and core genome analysis of 38 sequenced strains, confirmed for all the strains but one, the taxonomic assignation obtained with the sole gapA sequence. Pectobacterium spp. (549 isolates) were far more abundant than Dickeya spp. (33 isolates). Dickeya spp. were only observed in the lower part of the river when water temperature was >19°C, and we experimentally confirmed a decreased fitness of several Dickeya spp. at 8°C in river water. D. oryzae dominates the Dickeya spp. and P. versatile and P. aquaticum dominate the Pectobacterium spp., but their repartition along the watershed was different, with P. versatile being the only species regularly recovered all along the watershed. Excepting P. versatile, the Dickeya and Pectobacterium spp. responsible for disease outbreak on crops were less abundant or rarely detected. This work sheds light on the various ecological behaviors of different SRP types in stream water and indicates that SRP occupation is geographically structured.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Claire Bertrand
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Emma Rochelle-Newall
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Sarah Fiorini
- Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Centre de Recherche en Écologie Expérimentale et Prédictive, Paris Sciences & Lettres Research University, UMS 3194, 77140 Saint-Pierre-lès-Nemours, France
| | - Jacques Pédron
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Marie-Anne Barny
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| |
Collapse
|
11
|
Smoktunowicz M, Jonca J, Stachowska A, May M, Waleron MM, Waleron M, Waleron K. The International Trade of Ware Vegetables and Orna-Mental Plants—An Underestimated Risk of Accelerated Spreading of Phytopathogenic Bacteria in the Era of Globalisation and Ongoing Climatic Changes. Pathogens 2022; 11:pathogens11070728. [PMID: 35889973 PMCID: PMC9319320 DOI: 10.3390/pathogens11070728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria of the genus Pectobacterium are globally occurring pathogens that infect a broad spectrum of plants. The plant cell wall degrading enzymes allow them to cause diseases like soft rot and blackleg. Worldwide trade and exchange of plant material together with the accompanying microorganisms contributed to the rapid spread and consequently the acquisition of new traits by bacteria. The 161 pectinolytic strains were isolated from symptomless vegetables and ornamental plants acquired from Polish and foreign local food markets. All strains except four Dickeya isolates were identified as belonging to the Pectobacterium genus by PCR with species-specific primers and recA gene sequencing. The newly isolated bacteria were assigned to eight species, P. versatile (50 strains), P. carotovorum (33), P. brasiliense (27), P. atrosepticum (19), P. parmentieri (12), P. polaris (11), P. parvum (3) and P. odoriferum (2). ERIC PCR and phenotypic characteristics revealed high heterogeneity among P. carotovorum, P. brasiliense and P. versatile isolates. Moreover, a subset of the newly isolated strains was characterised by high tolerance to changing environmental conditions such as salinity, pH and water availability. These bacteria can effectively macerate the tissues of various plants, including potato, chicory and orchid. Our results indicate that Pectobacterium strains isolated from internationally traded, symptomless vegetables and ornamental plants have high potential for adaptation to adverse environmental conditions and to infect various host plants. These features may contribute to the success of the genus Pectobacterium in spreading between different climatic zones and facilitate the colonisation of different ecological niches.
Collapse
Affiliation(s)
- Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Aneta Stachowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Michal May
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Michal Mateusz Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, 80-307 Gdansk, Poland; (J.J.); (A.S.); (M.M.); (M.M.W.)
- Correspondence: (M.W.); (K.W.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
- Correspondence: (M.W.); (K.W.)
| |
Collapse
|
12
|
Genetic and Phenotypic Study of the Pectobacterium versatile Beta-Lactamase, the Enzyme Most Similar to the Plasmid-Encoded TEM-1. Appl Environ Microbiol 2022; 88:e0022022. [PMID: 35575550 DOI: 10.1128/aem.00220-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genus Pectobacterium bacteria include important agricultural pathogens. Pectobacterium versatile isolates contain a chromosome-borne beta-lactamase, PEC-1. This enzyme is the closest relative of TEM-1, a plasmid-borne beta-lactamase widespread in the Enterobacterales. We performed bioinformatics and phenotypic analyses to investigate the genetic and phenotypic features of PEC-1 and its frequency and ability to spread within genus Pectobacterium. We also compared the characteristics of PEC-1 and TEM-1 and evaluated the likelihood of transfer. We found that blaPEC-1 was present principally in a small number of genetic environments in P. versatile. Identical blaPEC-1 genetic environments were present in closely related species, consistent with the high frequency of genetic exchange within the genus Pectobacterium. Despite the similarities between PEC-1 and TEM-1, their genetic environments displayed no significant identity, suggesting an absence of recent transfer. Phenotypic analyses on clonal constructs revealed similar hydrolysis spectra. Our results suggest that P. versatile is the main reservoir of PEC-1, which seems to transfer to closely related species. The genetic distance between PEC-1 and TEM-1, and the lack of conserved elements in their genetic environments, suggest that any transfer that may have occurred must have taken place well before the antibiotic era. IMPORTANCE This study aimed to compare the chromosomal beta-lactamase from Pectobacterium versatile, PEC-1, with the well-known and globally distributed TEM-1 in terms of genetic and functional properties. Despite the similarities between the enzymes, we obtained no definitive proof of gene transfer for the emergence of blaPEC-1 from blaTEM-1. Indeed, given the limited degree of sequence identity and the absence of a common genetic environment, it seems unlikely that any transfer of this gene has occurred recently. However, although blaPEC-1 was found mostly in one specific clade of the P. versatile species, certain isolates from other closely related species, such as Pectobacterium brasiliense and Pectobacterium polaris, may also carry this gene inserted into common genetic environments. This observation suggests that genetic exchanges are frequent, accounting for the diffusion of blaPEC-1 between isolates from different Pectobacterium species and, potentially, to exogenous mobile genetic elements.
Collapse
|
13
|
Zhou J, Hu M, Hu A, Li C, Ren X, Tao M, Xue Y, Chen S, Tang C, Xu Y, Zhang L, Zhou X. Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. FRONTIERS IN PLANT SCIENCE 2022; 13:852750. [PMID: 35557713 PMCID: PMC9088014 DOI: 10.3389/fpls.2022.852750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Ren
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Min Tao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chongzhi Tang
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
| | - Yiwu Xu
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
- Qingyuan Agricultural Science and Technology Service Co., Ltd., Qingyuan, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Building More Resilient Culture Collections: A Call for Increased Deposits of Plant-Associated Bacteria. Microorganisms 2022; 10:microorganisms10040741. [PMID: 35456792 PMCID: PMC9029405 DOI: 10.3390/microorganisms10040741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Biological collections preserve our past, while helping protect our future and increase future knowledge. Plant bacterial culture collections are our security for domestic and global biosecurity. This feature article will provide an introduction to the global position of plant bacterial collections. The role of collections in monitoring plant pathogenic bacteria will be explored through the presentation of five cases studies. These case studies demonstrate why culture collections were imperative for the outcome in each situation. We discuss what we believe should be the best practices to improve microbial preservation and accessioning rates, and why plant bacterial culture collections must increase deposits to be prepared for future emerging pathogens. This is not only the case for global culture collections, but on a much bigger scale, our future scientific successes, our biosecurity decisions and responses, and our knowledge are contingent upon preserving our valuable bacterial strains. It is hoped that once you read this article, you will see the need to deposit your strains in registered public collections and make a concerted effort to build better bacterial culture collections with us.
Collapse
|