1
|
Lawhon SD, Burbick CR, Krueger T, Ruiz-Reyes E, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from domestic companion and agricultural animals described in 2023. J Clin Microbiol 2024; 62:e0104124. [PMID: 39495011 PMCID: PMC11633096 DOI: 10.1128/jcm.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
With the proliferation of abundant bacterial genomic data comes the recognition of new organisms as well as a better understanding of the relatedness of known bacteria. Recognizing the associated taxonomic changes enhances communication and understanding about the significance of novel organisms and deeper understanding of known pathogens. This review addresses the addition of multiple gastrointestinal bacteria that form the normal microbiota in a variety of animals including honeybees as well as novel bacteria from domestic animals including an alpha-hemolytic Streptococcus species from guinea pigs, two Moraxella spp. from cows and goats, a new Capnocytophaga species from cats, a thermophilic Campylobacter species from pigs, and the new Exercitatus genus in Family Pasteurellaceae. Several revisions to the nomenclature also appeared in 2023 including the change of Clostridium spiroforme, which causes anorexia and diarrhea in domestic rabbits, to Thomasclavelia spiroformis comb. nov. and Mannheimia ovis to Mannheimia pernigra.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Trinity Krueger
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elena Ruiz-Reyes
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Burbick CR, Lawhon SD, Bukouras B, Lazzerini G, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022-2023. J Clin Microbiol 2024; 62:e0104324. [PMID: 39445811 PMCID: PMC11558999 DOI: 10.1128/jcm.01043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The description of new taxa and nomenclature updates to currently known taxa from aquatic animal species continues. After a review of the literature from 2022 and 2023, multiple lists of bacteria, including members of Phylum Planctomycetota, were compiled. As with the previous review, most bacteria are oxidase-positive Gram-negative bacilli with familiar families including new taxa in Aeromonadaceae, Flavobacteriaceae, and Vibrionaceae. A number of Gram-positive bacilli are described including new taxa in the Nocardioides, Paenibacillus, and Streptomyces genera. Two anaerobic species are listed, and one new member of Family Planctomycetaceae is noted. Revised taxa are briefly mentioned. The majority of new and revised taxa are isolated from healthy aquatic animals, and therefore, the role of these new bacteria in health and disease is unknown. Bacteria with pathogenic association and potential production of bioactive substances are highlighted.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Brittany Bukouras
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Giovanna Lazzerini
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
He Y, Xiao Y, Feng Y, Wu S, Wei L, Zong Z. Two novel Enterobacter species, Enterobacter chinensis sp. nov. and Enterobacter rongchengensis sp. nov., recovered from clinical samples carrying multiple virulence factors. Microbiol Spectr 2024; 12:e0029224. [PMID: 38916331 PMCID: PMC11302248 DOI: 10.1128/spectrum.00292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
Two Enterobacter strains 170198T and 170250T were isolated from clinical blood samples from distinct patients in a hospital in Chengdu, China, in 2022. These isolates were subjected to whole-genome sequencing. A phylogenomic tree based on 2,096 concatenated core genes showed that the two strains were clustered within the genus Enterobacter. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between each of the two strains and type strains of all currently known Enterobacter species were determined. The two strains belonged to two novel species as the highest ANI and isDDH values with type strains of all currently known Enterobacter species below the cutoff for species demarcation (96% for ANI and 70% for isDDH). Then the physiological and biochemical studies demonstrated that biochemical features and the profile of whole fatty acids of strains 170198T and 170250T were largely consistent with those known Enterobacter species. Nevertheless, the two novel species can be differentiated from all other Enterobacter species by certain biochemical characteristics. In conclusion, 170198T and 170250T represent two novel species of the genus Enterobacter, for which we propose Enterobacter chinensis sp. nov. and Enterobacter rongchengensis sp. nov., as the species names. The type strains of Enterobacter chinensis sp. nov., and Enterobacter rongchengensis sp. nov. are 170198T (=GDMCC 1.3549T=JCM 35826T) and 170250T (=GDMCC 1.3670T=JCM 36189T), respectively. The two novel species have clinical significance with the ability to cause bloodstream infections.IMPORTANCEEnterobacter is a group of bacteria comprising several common opportunistic pathogens and has a complicated taxonomy. Here, we reported two novel Enterobacter species. We demonstrated that the two novel species can be differentiated from other Enterobacter species by certain phenotypic characteristics and therefore provide information for designing tests for identification. We also showed that strains of the two novel species are able to cause human bloodstream infections and carry multiple virulence factors and therefore are of clinical significance. We highlight that the virulence of Enterobacter is less studied and warrants further exploration. We believe that the findings here are valuable for enhancing the appreciation toward Enterobacter, an important pathogen.
Collapse
Affiliation(s)
- Yanling He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shikai Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Verstraeten S, Layec S, Auger S, Juste C, Henry C, Charif S, Jaszczyszyn Y, Sokol H, Beney L, Langella P, Thomas M, Huillet E. Faecalibacterium duncaniae A2-165 regulates the expression of butyrate synthesis, ferrous iron uptake, and stress-response genes based on acetate consumption. Sci Rep 2024; 14:987. [PMID: 38200051 PMCID: PMC10781979 DOI: 10.1038/s41598-023-51059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.
Collapse
Affiliation(s)
- Sophie Verstraeten
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Séverine Layec
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Catherine Juste
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sawiya Charif
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Harry Sokol
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Laurent Beney
- UMR PAM, INRAe, Université Bourgogne Franche-Conté, AgroSup Dijon, Dijon, France
| | - Philippe Langella
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Muriel Thomas
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Eugénie Huillet
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.
| |
Collapse
|
5
|
Munson E, Carella A, Carroll KC. Valid and accepted novel bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2022. J Clin Microbiol 2023; 61:e0083823. [PMID: 37889007 PMCID: PMC10662342 DOI: 10.1128/jcm.00838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Although some nomenclature changes have caused consternation among clinical microbiologists, the discovery of novel taxa and improving classification of existing groups of organisms is exciting and adds to our understanding of microbial pathogenesis. In this mini-review, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2022. Henceforth, these bacteriology taxonomic summaries will appear annually. Several of the novel Gram-positive organisms have been associated with disease, namely, the Corynebacterium kroppenstedtii-like organisms Corynebacterium parakroppenstedtii sp. nov. and Corynebacterium pseudokroppenstedtii sp. nov. A newly described Streptococcus species, Streptococcus toyakuensis sp. nov., is noteworthy for exhibiting multi-drug resistance. Among the novel Gram-negative pathogens, Vibrio paracholerae sp. nov. stands out as an organism associated with diarrhea and sepsis and has probably been co-circulating with pandemic Vibrio cholerae for decades. Many new anaerobic organisms have been described in this past year largely from genetic assessments of gastrointestinal microbiome collections. With respect to revised taxa, as discussed in previous reviews, the genus Bacillus continues to undergo further division into additional genera and reassignment of existing species into them. Reassignment of two subspecies of Fusobacterium nucleatum to species designations (Fusobacterium animalis sp. nov. and Fusobacterium vincentii sp. nov.) is also noteworthy. As was typical of previous reviews, literature updates for selected clinically relevant organisms discovered between 2017 and 2021 have been included.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Arianna Carella
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Guo L, Liu J, Hou Q, Zhao B, Zhang X, Wang H. Salipaludibacillus daqingensis sp. nov., a moderately halophilic bacterium isolated from an oilfield. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917134 DOI: 10.1099/ijsem.0.006126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
A novel alkaliphilic, Gram-stain-positive, moderately halophilic, rod-shaped, endospore-forming, motile, facultatively anaerobic bacterium (DQ-9T) was isolated from a sediment sample collected from Daqing oilfield in China, and characterized by a polyphasic taxonomic approach. Strain DQ-9T formed yellow pigment and grew occurred at salinities of 1-12 % (w/v) NaCl (optimum, 8 %) and at 10-40 °C (optimum, 30-35 °C), at pH 7.5-10.5 (optimum, pH 9.0-9.5). It was catalase-positive, but oxidase-negative. Based on the analysis of 16S rRNA gene sequences, DQ-9T was classified into the genus Salipaludibacillus and exhibited the highest similarities (98.37 %) to Salipaludibacillus neizhouensis JSM 071004T. Digital DNA-DNA hybridization and average nucleotide identity values between strain DQ-9T and the most closely related strain, S. neizhouensis DSM 19794T, were determined to be 72.0 and 21.6 %, respectively. The polar lipids were constituted by diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) comprised anteiso-C15 : 0, anteiso-C17 : 0, iso-C17 : 0, iso-C15 : 0 and C16 : 0. The cell-wall peptidoglycan contained meso-diaminopimelic acid, and menaquinone-7 was identified as the primary respiratory quinone. The DNA G+C content was 37.5 mol%. Through chemotaxonomic, physiological, and biochemical characterization, strain DQ-9T could be clearly distinguished from the closest Salipaludibacillus species. Based on provided data, strain DQ-9T is proposed to represent a novel species, Salipaludibacillus daqingensis sp. nov., within the genus Salipaludibacillus. The type strain is DQ-9T (=ACCC 60415T=KCTC 33936T).
Collapse
Affiliation(s)
- Liwei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiading Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qiang Hou
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Baisuo Zhao
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Haisheng Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
7
|
Coe LSY, Fei C, Weston J, Amin SA. Phycobacter azelaicus gen. nov. sp. nov., a diatom symbiont isolated from the phycosphere of Asterionellopsis glacialis. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889154 DOI: 10.1099/ijsem.0.006104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
A diatom-associated bacterium, designated as strain F10T, was isolated from a pure culture of the pennate diatom Asterionellopsis glacialis A3 and has since been used to characterize molecular mechanisms of symbiosis between phytoplankton and bacteria, including interactions using diatom-derived azelaic acid. Its origin from a hypersaline environment, combined with its capacity for quorum sensing, biofilm formation, and potential for dimethylsulfoniopropionate methylation/cleavage, suggest it is within the family Roseobacteraceae. Initial phylogenetic analysis of the 16S rRNA gene sequence placed this isolate within the Phaeobacter genus, but recent genomic and phylogenomic analyses show strain F10T is a separate lineage diverging from the genus Pseudophaeobacter. The genomic DNA G+C content is 60.0 mol%. The predominant respiratory quinone is Q-10. The major fatty acids are C18 : 1 ω7c and C16 : 0. Strain F10T also contains C10 : 03-OH and the furan-containing fatty acid 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid). The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on genomic, phylogenomic, phenotypic and chemotaxonomic characterizations, strain F10T represents a novel genus and species with the proposed name, Phycobacter azelaicus gen. nov. sp. nov. The type strain is F10T (=NCMA B37T=NCIMB 15470T=NRIC 2002T).
Collapse
Affiliation(s)
- Lisa S Y Coe
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Cong Fei
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - James Weston
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
- Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| |
Collapse
|
8
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Burbick CR, Munson E, Lawhon SD, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria (Including Members of the Phylum Planctomycetota) Isolated from Aquatic Host Species Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142622. [PMID: 36719221 PMCID: PMC9945501 DOI: 10.1128/jcm.01426-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased interest in farmed aquatic species, aquatic conservation measures, and microbial metabolic end-product utilization have translated into a need for awareness and recognition of novel microbial species and revisions to bacterial taxonomy. Because this need has largely been unmet, through a 4-year literature review, we present lists of novel and revised bacterial species (including members of the phylum Planctomycetota) derived from aquatic hosts that can serve as a baseline for future biennial summaries of taxonomic revisions in this field. Most new and revised taxa were noted within oxidase-positive and/or nonglucose fermentative Gram-negative bacilli, including members of the Tenacibaculum, Flavobacterium, and Vibrio genera. Valid and effectively published novel members of the Streptococcus, Erysipelothrix, and Photobacterium genera are additionally described from disease pathogenesis perspectives.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Munson E, Carroll KC. Update on Accepted Novel Bacterial Isolates Derived from Human Clinical Specimens and Taxonomic Revisions Published in 2020 and 2021. J Clin Microbiol 2023; 61:e0028222. [PMID: 36533910 PMCID: PMC9879126 DOI: 10.1128/jcm.00282-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of factors, including microbiome analyses and the increased utilization of whole-genome sequencing in the clinical microbiology laboratory, has contributed to the explosion of novel prokaryotic species discovery, as well as bacterial taxonomy revision. This review attempts to summarize such changes relative to human clinical specimens that occurred in 2020 and 2021, per primary publication in the International Journal of Systematic and Evolutionary Microbiology or acceptance on Validation Lists published by the International Journal of Systematic and Evolutionary Microbiology. Of particular significance among valid and effectively published taxa within the past 2 years were novel Corynebacterium spp., coagulase-positive staphylococci, Pandoraea spp., and members of family Yersiniaceae. Noteworthy taxonomic revisions include those within the Bacillus and Lactobacillus genera, family Staphylococcaceae (including unifications of subspecies designations to species level taxa), Elizabethkingia spp., and former members of Clostridium spp. and Bacteroides spp. Revisions within the Brucella genus have the potential to cause deleterious effects unless the relevance of such changes is properly communicated by microbiologists to stakeholders in clinical practice, infection prevention, and public health.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Göker M. Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748602 DOI: 10.1099/ijsem.0.005638] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) recently underwent some major modifications regarding the higher taxonomic ranks. On the one hand, the phylum category was introduced into the ICNP, which rapidly led to the valid publication of more than forty names of phyla. On the other hand, a decision on the retroactivity of Rule 8 regarding the names of classes was made, which removed most of the nomenclatural uncertainty that had affected those names during the last decade. However, it turned out that a number of names at the ranks of class, order and family are either not validly published or are validly published but illegitimate, although these names occur in the literature and are based on the type genus of a phylum with a validly published name. A closer examination of the literature for these and similar cases indicates that the names are unavailable under the ICNP either because of minor formal errors in the original descriptions, because another name should have been adopted for the taxon when the name was proposed, because of taxonomic uncertainties that were settled in the meantime, or because the names were placed on the list of rejected names. The purpose of this article is to fill the gaps by providing the missing formal descriptions and to ensure that the resulting taxon names are attributed to the original authors who did the taxonomic work.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
13
|
A taxonomic note on the genus Prevotella: Description of four novel genera and emended description of the genera Hallella and Xylanibacter. Syst Appl Microbiol 2022; 45:126354. [DOI: 10.1016/j.syapm.2022.126354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
|
14
|
Narsing Rao MP, Wang H, Banerjee A, Xiao M, Li X, Kang YQ, Li WJ. Proposal to transfer Bacillus lacisalsi Dong et al. 2021 to the genus Alteribacter as Alteribacter lacisalsi comb. nov. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study, the taxonomic position of
Bacillus lacisalsi
YSP-3T was evaluated using phylogenetic and genome-based comparison.
B. lacisalsi
YSP-3T showed the highest 16S rRNA gene sequence similarity to
Alteribacter natronophilus
M30T (98.4 %), followed by
Alteribacter aurantiacus
K1-5T (97.5 %) and
Alteribacter populi
FJAT-45347T (97.2 %). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic (based on 71 bacterial single-copy genes) trees,
B. lacisalsi
YSP-3T clustered with the members of the genus
Alteribacter
. The amino acid identity (AAI) values between
B. lacisalsi
YSP-3T and the members of the genus
Alteribacter
were >65 %, which is above the cut-off level (65–95 %) for genus delineation. The average nucleotide identity (ANI) values between
B. lacisalsi
YSP-3T and the members of the genus
Alteribacter
were <95 %, which is lower than the threshold value (95–96 %) for bacterial species delineation. The AAI value suggested that
B. lacisalsi
YSP-3T was a member of the genus
Alteribacter
while the ANIb value suggested it as a novel species of the genus
Alteribacter
. Based on the results, we propose to transfer
Bacillus lacisalsi
to the genus
Alteribacter
as Alteribacter lacisalsi comb. nov.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Talent Base of Microbiology and Human Health of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, PR China
| | - Haijie Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Talent Base of Microbiology and Human Health of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, PR China
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - XiaoBin Li
- Guizhou Sunveen Liquor Co., Ltd, Guiyang 550022, PR China
- Guizhou Chishui Riverside Maotai-flavor Liquor Research Center, Guiyang 550003, PR China
| | - Ying-Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Talent Base of Microbiology and Human Health of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
15
|
Du J, Liu Y, Pei T, Li A, Zhu H. Ruegeria alba sp. nov., Isolated from a Tidal Flat Sediment. Curr Microbiol 2022; 79:267. [PMID: 35881206 DOI: 10.1007/s00284-022-02968-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
A novel Gram-staining-negative, aerobic, rod-shaped, and white-colored bacterium designated as 1NDH52CT was isolated from a tidal flat sediment and its taxonomic position was determined using a polyphasic taxonomic approach. The microorganism was found to grow at 10-37 °C, pH 6.0-9.0, and in the presence of 0-2% (w/v) NaCl, and to hydrolyze gelatin and aesculin. The major cellular fatty acid of strain 1NDH52CT was summed feature 8 (C19:1 ω7c and/or C18:1 ω6c); the polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, and a lipid; the respiratory quinone was ubiquinone-10. The 16S rRNA gene-based phylogenetic analysis showed that strain 1NDH52CT was closely related to members of the genus Ruegeria with the identity of 98.2% to the type strain Ruegeria pomeroyi DSM 15711T. The genome DNA G + C content of strain 1NDH52CT was 63.6%. The phylogenomic analysis indicated that strain 1NDH52CT formed an independent branch distinct from reference type strains of species within this genus. Digital DNA-DNA hybridization and average nucleotide identity values between strain 1NDH52CT and reference strains were, respectively, 19.1-41.5% and 78.3-91.3%, which are far below the thresholds of 70% and 95-96% for species definition, respectively, indicating that strain 1NDH52CT represents a novel genospecies of the genus Ruegeria. Based on phenotypic and genotypic data, strain 1NDH52CT is concluded to represent a novel species of the genus Ruegeria, for which the name Ruegeria alba sp. nov., is proposed. The type strain of the species is 1NDH52CT (= GDMCC 1.2382T = KCTC 82664T).
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Yang Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Tao Pei
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
16
|
Xu L, Shang J, Tian J, Sun JQ, Shen B. Ruania suaedae sp. nov. and Ruania halotolerans sp. nov., two actinobacteria isolated from saline soil, and reclassification of Haloactinobacterium kanbiaonis as Occultella kanbiaonis comb. nov. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005443] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-positive, non-motile, strictly aerobic, yellow-coloured, rod-shaped bacterial strains, designated LR1S40T and M4N3S171T, were isolated from rhizosphere and bulk saline soil of Suaeda salsa collected in Inner Mongolia, China. Phylogenetic trees based on 16S rRNA gene and whole genome sequences showed that the two strains clustered tightly with strains of the genus
Ruania
. Strains LR1S40T and M4N3S171T had 95.5% 16S rRNA gene similarity to each other, and strain LR1S40T had 98.8, 98.7, 97.4 and <97.0% similarity to
Ruania alkalisoli
RN3S43T,
Ruania rhizosphaerae
LNNU 22110T,
Ruania alba
YIM 93306T and all other current type strains, while strain M4N3S171T had 98.6 and <97.0% similarity to
R. alba
YIM 93306T, and all other current type strains, respectively. The average nucleotide identity based on blast (ANIb) and digital DNA–DNA hybridization (dDDH) values of LR1S40T and M4N3S171T with each other and to the other type strains of
Ruania
were well below the threshold values (95% for ANIb, 70% for dDDH) for differentiating a species. Diphosphatidylglycerol and phosphatidylglycerol were the major polar lipids in both strains. The predominant menaquinone in both strains was both MK-8. The genome of strain LR1S40T consisted of a 3557440 bp circular chromosome, with a G+C content of 71.1 mol%, while the genome of strain M4N3S171T consisted of 4270413 bp, with a G+C content of 67.6 mol%. The phylogenetic, physiological and phenotypic characteristics allowed discrimination of the two strains from their relatives. The names Ruania suaedae sp. nov. [type strain LR1S40T (=CGMCC 1.19028T=KCTC 49726T)] and Ruania halotolerans sp. nov. [type strain M4N3S171T (=CGMCC 1. 19142T=KCTC 49727T)] are therefore proposed. During the publication of
Haloactinobacterium kanbiaonis
,
Haloactinobacterium glacieicola
(type strain T3246-1T), which was selected as the reference strain for the identification of
H. kanbiaonis
, was reclassified as
Occultella glacieicola
. The two phylogenetic trees showed that
H. kanbiaonis
HY164T tightly clustered with
Occultella aeris
F300T, and had the highest 16S rRNA gene similarity (99.8%) to
O. aeris
F300T. Based on the phylogenetic analysis and the publication record,
Haloactinobacterium kanbiaonis
should be reclassified as Occultella kanbiaonis comb. nov.
Collapse
Affiliation(s)
- Lian Xu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jia Shang
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Jing Tian
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Biao Shen
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
17
|
Byeon YS, Kim SM, Yang HL, Kim IS, Lee SD. Aeromicrobium stalagmiti sp. nov., isolated from a lava cave. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-positive, strictly aerobic, non-sporulating, non-motile, rod-shaped bacterium, designated YC3-14T, was isolated from pieces of stalagmite collected in a lava cave in Jeju, Republic of Korea. Cells showed growth at 15–35 °C, pH 6.0–9.0 and with 0–3 % (w/v) NaCl. Colonies of the cells were circular, smooth, convex and cream in colour. A 16S rRNA gene-based neighbour-joining tree indicated that the organism belonged to the genus
Aeromicrobium
and formed a sublineage between an Aeromicrobium endophyticum–Aeromicrobium fastidiosum cluster and an Aeromicrobium yanjiei–Aeromicrobium chenweiae cluster. The highest 16S rRNA gene similarity values of strain YC3-14T were with the type strains of
A. yanjiei
(99.2 %),
A. endophyticum
(99.1 %),
A. fastidiosum
(98.8 %),
A. ginsengisoli
(98.8 %) and
A
.
chenweiae
(98.7 %). The cell-wall peptidoglycan contained ll-diaminopimelic acid as the diagnostic diamino acid. The major menaquinone was MK-9(H4). The predominant fatty acids were C18 : 0.10-methyl, C18 : 1
ω9c and C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unidentified phospholipid and two unidentified lipids. The G+C content of the genome DNA was 69.9 mol%. These chemotaxonomic features of the isolate were typical for the genus
Aeromicrobium
. The genome-based phylogeny showed the same tree topology as the 16S rRNA gene phylogeny. The average nucleotide identity (≤84.5 %) and digital DNA–DNA hybridization (≤27.5 %) values supported that the isolate belongs to a novel species of the genus
Aeromicrobium
. On the basis of data obtained by a polyphasic approach, strain YC3-14T (=KCTC 49469T=NBRC 114653T) represents a novel species of the genus
Aeromicrobium
, for which the name Aeromicrobium stalagmiti sp. nov. is proposed.
Collapse
Affiliation(s)
- Yeong-Sik Byeon
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung-Min Kim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Hong Lim Yang
- Institute of Hallasan Ecology and Culture, Jeju 63064, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| | - Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| |
Collapse
|
18
|
Genome-based, phenotypic and chemotaxonomic classification of Faecalibacterium strains: proposal of three novel species Faecalibacterium duncaniae sp. nov., Faecalibacterium hattorii sp. nov. and Faecalibacterium gallinarum sp. nov. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Faecalibacterium prausnitzii
is one of the most important butyrate-producing bacteria in the human gut. Previous studies have suggested the presence of several phylogenetic groups, with differences at the species level, in the species, and a taxonomic re-evaluation is thus essential for further understanding of ecology of the important human symbiont. Here we examine the phenotypic, physiological, chemotaxonomic and phylogenomic characteristics of six
F. prausnitzii
strains (BCRC 81047T=ATCC 27768T, A2-165T=JCM 31915T, APC918/95b=JCM 39207, APC942/30−2=JCM 39208, APC924/119=JCM 39209 and APC922/41−1T=JCM 39210T) deposited in public culture collections with two reference strains of
Faecalibacterium butyricigenerans
JCM 39212T and
Faecalibacterium longum
JCM 39211T.
Faecalibacterium
sp. JCM 17207T isolated from caecum of broiler chicken was also included. Three strains of
F. prausnitzii
(BCRC 81047T, JCM 39207 and JCM 39209) shared more than 96.6 % average nucleotide identity (ANI) and 69.6 % digital DNA–DNA hybridization (dDDH) values, indicating that the three strains are members of the same species. On the other hand, the remaining three strains of
F. prausnitzii
(JCM 31915T, JCM 39208 and JCM 39210T) were clearly separated from the above three strains based on the ANI and dDDH values. Rather, JCM 39208 showed ANI and dDDH values over the cut-off values of species discrimination (>70 % dDDH and >95–96 % ANI) with
F. longum
JCM 39211T, whereas JCM 31915T, JCM 39210T and JCM 17207T did not share dDDH and ANI values over the currently accepted cut-off values with any of the tested strains, including among them. Furthermore, the cellular fatty acid patterns of these strains were slightly different from other
F. prausnitzii
strains. Based on the collected data,
F. prausnitzii
JCM 31915T,
F. prausnitzii
JCM 39210T and
Faecalibacterium
sp. JCM 17207T represent three novel species of the genus
Faecalibacterium
, for which the names Faecalibacterium duncaniae sp. nov. (type strain JCM 31915T=DSM 17677T=A2-165T), Faecalibacterium hattorii sp. nov. (type strain JCM 39210T=DSM 107841T=APC922/41-1T) and Faecalibacterium gallinarum sp. nov. (type strain JCM 17207T=DSM 23680T=ic1379T) are proposed.
Collapse
|
19
|
Schnürer A, Singh A, Bi S, Qiao W, Westerholm M. Miniphocaeibacter halophilus sp. nov., an ammonium-tolerant acetate-producing bacterium isolated from a biogas system. Int J Syst Evol Microbiol 2022; 72:005328. [PMID: 35312473 PMCID: PMC9558581 DOI: 10.1099/ijsem.0.005328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
An anaerobic bacterial strain, designated AMB_01T, recovered from mesophilic propionate enrichment of a high-ammonia biogas digester, was characterised using phenotypic and molecular taxonomic methods. Cells of AMB_01T are coccus-shaped and often occur arranged as diplococci or sarcina. Growth occurred at 20-45 °C, initial pH 5.5-8.5 and with up to 0.7 M NH4Cl, with optimum growth at 37-42 °C and pH 8.0. AMB_01T achieved high cell density and highest acetate production when grown on carbohydrates, including monomers, disaccharides and polysaccharides, such as glucose, maltose, cellobiose and starch. The strain was also able to use amino acids and some organic acids and alcoholic compounds for growth. Acetate was formed as the main product and yeast was not required for growth. The major cellular fatty acids were summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B), C18 : 1ω7, C14 : 0, C16 : 0 and summed feature 3 (C16 : 1ω7 and/or iso-C15 : 0 2OH). The highest 16S rRNA gene sequence similarity found was with Miniphocaeibacter massiliensis (96.6 %), within the family Peptoniphilaceae, phylum Bacillota (Firmicutes). The genomic DNA G+C content was 29.0 mol%. An almost complete set of genes for the acetyl-CoA pathway was found. Genome comparisons between AMB_01T and close relatives showed highest digital DNA-DNA hybridisation to Finegoldia magna (23 %), highest average nucleotide identity with genome nucleotide and amino acid sequences to M. massiliensis (72 and 73 %, respectively) and highest average nucleotide identity (87 %) with Schnuerera ultunensis, indicating that AMB_01T represents a novel species. Analysis of genomic, chemotaxonomic, biochemical and physiological data confirmed that strain AMB_01T represents a novel species, for which the name Miniphocaeibacter halophilus sp. nov. is proposed. The type strain is AMB_01T (=DSM 110247T=JCM 39107 T).
Collapse
Affiliation(s)
- Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shaojie Bi
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 2022; 72:005243. [PMID: 35238735 PMCID: PMC9558580 DOI: 10.1099/ijsem.0.005243] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
The alphaproteobacterial family Rhizobiaceae is highly diverse, with 168 species with validly published names classified into 17 genera with validly published names. Most named genera in this family are delineated based on genomic relatedness and phylogenetic relationships, but some historically named genera show inconsistent distribution and phylogenetic breadth. The most problematic is Rhizobium , which is notorious for being highly paraphyletic, as most newly described species in the family are assigned to this genus without consideration of their proximity to existing genera, or the need to create novel genera. Moreover, many Rhizobiaceae genera lack synapomorphic traits that would give them biological and ecological significance. We propose a common framework for genus delimitation within the family Rhizobiaceae , wherein genera are defined as monophyletic groups in a core-genome gene phylogeny, that are separated from related species using a pairwise core-proteome average amino acid identity (cpAAI) threshold of approximately 86 %. We further propose that additional genomic or phenotypic evidence can justify division of species into separate genera even if they share greater than 86 % cpAAI. Applying this framework, we propose to reclassify Rhizobium rhizosphaerae and Rhizobium oryzae into Xaviernesmea gen. nov. Data is also provided to support the formation of Peteryoungia aggregata comb. nov., Endobacterium yantingense comb. nov., Neorhizobium petrolearium comb. nov., Pararhizobium arenae comb. nov., Pseudorhizobium tarimense comb. nov. and Mycoplana azooxidifex comb. nov. Lastly, we present arguments that the unification of the genera Ensifer and Sinorhizobium in Opinion 84 of the Judicial Commission is no longer justified by current genomic and phenotypic data. Despite pairwise cpAAI values for all Ensifer species and all Sinorhizobium species being >86 %, additional genomic and phenotypic data suggest that they significantly differ in their biology and ecology. We therefore propose emended descriptions of Ensifer and Sinorhizobium , which we argue should be considered as separate genera.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants (JKI), Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Florent Lassalle
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
21
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6516937. [DOI: 10.1093/femsec/fiac004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
|
22
|
Abstract
The remarkable success of taxonomic discovery, powered by culturomics, genomics and metagenomics, creates a pressing need for new bacterial names while holding a mirror up to the slow pace of change in bacterial nomenclature. Here, I take a fresh look at bacterial nomenclature, exploring how we might create a system fit for the age of genomics, playing to the strengths of current practice while minimizing difficulties. Adoption of linguistic pragmatism-obeying the rules while treating recommendations as merely optional-will make it easier to create names derived from descriptions, from people or places or even arbitrarily. Simpler protologues and a relaxed approach to recommendations will also remove much of the need for expert linguistic quality control. Automated computer-based approaches will allow names to be created en masse before they are needed while also relieving microbiologists of the need for competence in Latin. The result will be a system that is accessible, inclusive and digital, while also fully capable of naming the unnamed millions of bacteria.
Collapse
Affiliation(s)
- M.J. Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|