1
|
Liu H, Yang Q, Li J, Yang L, Zhao A, Huang Y, Liu H, Wu S, Jiang M. Microbacterium rhizophilus sp. nov., an indole acetic acid-producing actinobacterium isolated from rhizosphere soil. Antonie Van Leeuwenhoek 2024; 118:2. [PMID: 39269614 DOI: 10.1007/s10482-024-02014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
A novel gram-stain-positive, short rod, aerobic, non-motile and non-spore-forming actinobacterial strain, designated GXG1230T was isolated from the rhizosphere soil of a coastal mangrove forest in Beihai city, Guangxi Zhuang Autonomous Region, PR China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GXG1230T was affiliated with the genus Microbacterium. Additionally, it demonstrated a high degree of similarity to Microbacterium paludicola US15T (97.9%) and Microbacterium marinilacus YM11-607T (97.3%). Chemotaxonomic characteristics showed that the whole-cell sugars were glucose, xylose, rhamnose and galactose. Menaquinones MK-11 and MK-12 were detected as respiratory quinones. Lysine was found in the peptidoglycan hydrolysate and the polar lipids were diphosphatidylglycerol, one phospholipid and two unidentified glycolipid. The major fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The strain GXG1230T exhibited a genomic DNA G + C content of 71.7%. Furthermore, the average nucleotide identity values of GXG1230T with the reference strains were 75.4% and 81.9%, respectively, while the digital DNA-DNA hybridization values were 20.1% and 25.0%. Based on physiological, chemotaxonomic and phylogenetic information, strain GXG1230T is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium rhizophilus sp.nov is proposed, with GXG1230T (= MCCC 1K09302T = KCTC 59252T) as the type strain.
Collapse
Affiliation(s)
- Haifei Liu
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Quan Yang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Jiawei Li
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Aolin Zhao
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Ying Huang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Shujing Wu
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Mingguo Jiang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| |
Collapse
|
2
|
Zhang L, Zhao T, Geng L, Zhang C, Xiang W, Zhang J, Wang X, Shu C. Characterization and evaluation of actinomycete from the Protaetia brevitarsis Larva Frass. Front Microbiol 2024; 15:1385734. [PMID: 38812691 PMCID: PMC11133513 DOI: 10.3389/fmicb.2024.1385734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Protaetia brevitarsis larvae (PBL) are soil insects important for the soil organic carbon cycle, and PBL frass not only contains a large amount of humic acid but also affects the diversity, novelty, and potential functions of actinomycetes. Here, we characterized and assessed the actinomycete. The operational taxonomic unit (OTU) data showed that 90% of the actinomycetes cannot be annotated to species, and pure culture and genome analysis showed that 35% of the strains had the potential to be new species, indicating the novelty of PBL frass actinomycetes. Additionally, genome annotation showed that many gene clusters related to antifungal, antibacterial and insecticidal compound synthesis were identified, and confrontation culture confirmed the antifungal activities of the actinomycetes against soil-borne plant pathogenic fungi. The incubation experiment results showed that all isolates were able to thrive on media composed of straw powder and alkaline lignin. These results indicated that PBL hindgut-enriched actinomycetes could survive in soil by using the residual lignocellulose organic matter from plant residues, and the antibiotics produced not only give them a competitive advantage among soil microflora but also have a certain inhibitory effect on plant diseases and pests. This study suggests that the application of PBL frass can not only supplement soil humic acid but also potentially affect the soil microbiota of cultivated land, which is beneficial for the healthy growth of crops.
Collapse
Affiliation(s)
- Lida Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianxin Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Li C, Jin X, Yang F, Zhao J, Wang S, Sun Q, Li L, Liu L. Microbacterium nymphoidis sp. nov. and Microbacterium festucae sp. nov., two novel species with high plant-promoting potential isolated from wetland plants in China. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917000 DOI: 10.1099/ijsem.0.006121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Two novel plant growth-promoting, rod-shaped, Gram-positive and non-motile rhizobacteria, W1NT and W2RT, were isolated from wetland plants Festuca elata and Nymphoides peltatum, respectively, in China. The results of the 16S rRNA sequence alignment analysis showed that they were related to Microbacterium, with the highest similarity to Microbacterium ketosireducens (98.7 %) and Microbacterium laevaniformans (98.5 %) for strain W1NT, and to Microbacterium terricola (98.1 %) and Microbacterium marinum (98.0 %) for strain W2RT. Phylogenetic analyses based on 16S rRNA gene sequences and 92 conserved concatenated proteins suggested that the two strains belong to the genus Microbacterium and were placed in two separate novel phylogenetic clades. The genome sizes of the two strains were 3.2 and 3.7 Mb, and the G+C contents were 71.7 and 68.5 mol%, respectively. The comparative genome results showed that the average nucleotide identity values between W1NT and W2RT and other species ranged from 73.5 to 83.6 %, and the digital DNA-DNA hybridization values ranged from 19.7 to 26.8 %. These two strains show physiological and biochemical features that differ from those of closely related species. Rhamnose, galactose and glucose were present in the characteristic sugar fractions of strains W1NT and W2RT. The peptidoglycan of strains W1NT and W2RT contained the amino acids ornithine, alanine and aspartic acid. C15 : 0 anteiso, C17 : 0 anteiso and C16 : 0 iso were the predominant cellular fatty acids in W1NT and W2RT. Phosphatidylglycerol and diphosphatidylglycerol are major polar lipid components. Strain W1NT not only formed bacterial biofilms but also had the ability to solubilize phosphorus and produce indole-3-acetic acid. Strain W2RT had siderophore-producing and lignin-degrading properties. Based on their genetic and phenotypic characteristics, strains W1NT and W2RT were classified as novel bacteria in the genus Microbacterium and designated as Microbacterium festucae sp. nov. (type strain W1NT=ACCC 61807T=GDMCC 1.2966T=JCM 35339T) and Microbacterium nymphoidis sp. nov. (type strain W2RT=ACCC 61808T=GDMCC 1.2967T=JCM 35340T).
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, PR China
| | - Xiaoqian Jin
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
- Rizhao Garden and Sanitation Group Co., Ltd., Rizhao, Shandong, PR China
| | - Fu Yang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Jiayi Zhao
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Siyu Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Qiwu Sun
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Lubin Li
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| |
Collapse
|
4
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Nouioui I, Ha SM, Baek I, Chun J, Goodfellow M. Genome insights into the pharmaceutical and plant growth promoting features of the novel species Nocardia alni sp. nov. BMC Genomics 2022; 23:70. [PMID: 35062865 PMCID: PMC8783487 DOI: 10.1186/s12864-021-08257-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies highlighted the biosynthetic potential of nocardiae to produce diverse novel natural products comparable to that of Streptomyces, thereby making them an attractive source of new drug leads. Many of the 119 Nocardia validly named species were isolated from natural habitats but little is known about the diversity and the potential of the endophytic nocardiae of root nodule of actinorhizal plants. RESULTS The taxonomic status of an actinobacterium strain, designated ncl2T, was established in a genome-based polyphasic study. The strain was Gram-stain-positive, produced substrate and aerial hyphae that fragmented into coccoid and rod-like elements and showed chemotaxonomic properties that were also typical of the genus Nocardia. It formed a distinct branch in the Nocardia 16S rRNA gene tree and was most closely related to the type strains of Nocardia nova (98.6%), Nocardia jiangxiensis (98.4%), Nocardia miyuensis (97.8%) and Nocardia vaccinii (97.7%). A comparison of the draft genome sequence generated for the isolate with the whole genome sequences of its closest phylogenetic neighbours showed that it was most closely related to the N. jiangxiensis, N. miyuensis and N. vaccinii strains, a result underpinned by average nucleotide identity and digital DNA-DNA hybridization data. Corresponding taxogenomic data, including those from a pan-genome sequence analysis showed that strain ncl2T was most closely related to N. vaccinii DSM 43285T. A combination of genomic, genotypic and phenotypic data distinguished these strains from one another. Consequently, it is proposed that strain ncl2T (= DSM 110931T = CECT 30122T) represents a new species within the genus Nocardia, namely Nocardia alni sp. nov. The genomes of the N. alni and N. vaccinii strains contained 36 and 29 natural product-biosynthetic gene clusters, respectively, many of which were predicted to encode for a broad range of novel specialised products, notably antibiotics. Genome mining of the N. alni strain and the type strains of its closest phylogenetic neighbours revealed the presence of genes associated with direct and indirect mechanisms that promote plant growth. The core genomes of these strains mainly consisted of genes involved in amino acid transport and metabolism, energy production and conversion and transcription. CONCLUSIONS Our genome-based taxonomic study showed that isolate ncl2T formed a new centre of evolutionary variation within the genus Nocardia. This novel endophytic strain contained natural product biosynthetic gene clusters predicted to synthesize novel specialised products, notably antibiotics and genes associated with the expression of plant growth promoting compounds.
Collapse
Affiliation(s)
- Imen Nouioui
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany.
| | - Sung-Min Ha
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Inwoo Baek
- School of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jongsik Chun
- School of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
- ChunLab, Inc, Seoul, Korea
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, NE1 7RU, Newcastle upon Tyne, UK
| |
Collapse
|