1
|
Wang PH, Wu TY, Chen YL, Gicana RG, Lee TH, Chen MJ, Hsiao TH, Lu MYJ, Lai YL, Wang TY, Li JY, Chiang YR. Bacterial estrogenesis without oxygen: Wood-Ljungdahl pathway likely contributed to the emergence of estrogens in the biosphere. Proc Natl Acad Sci U S A 2025; 122:e2422930122. [PMID: 40053361 PMCID: PMC11912376 DOI: 10.1073/pnas.2422930122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Androgen and estrogen, key sex hormones, were long thought to be exclusively produced by vertebrates. The O2-dependent aromatase that converts androgen to estrogen (estrogenesis) has never been identified in any prokaryotes. Here, we report the finding of anaerobic estrogenesis in a Peptococcaceae bacterium (Phosphitispora sp. strain TUW77) isolated from the gut of the great blue-spotted mudskipper (Boleophthalmus pectinirostris). This strain exhibits testosterone fermentation pathways, transforming testosterone into estrogens and androstanediol under anaerobic conditions. Physiological experiments revealed that strain TUW77 grows exclusively on testosterone, utilizing the androgenic C-19 methyl group as both the carbon source and electron donor. The genomic analysis identified three copies of a polycistronic gene cluster, abeABC (anaerobic bacterial estrogenesis), encoding components of a classic cobalamin-dependent methyltransferase system. These genes, highly expressed under testosterone-fed conditions, show up to 57% protein identity to the characterized EmtAB from denitrifying Denitratisoma spp., known for methylating estrogen into androgen (the reverse reaction). Tiered transcriptomic and proteomic analyses suggest that the removed C-19 methyl group is completely oxidized to CO2 via the oxidative Wood-Ljungdahl pathway (WLP), while the reducing equivalents (NADH) fully reduce remaining testosterone to androstanediol. Consistently, the addition of anthraquinone-2,6-disulfonate, an extracellular electron acceptor, to testosterone-fed TUW77 cultures enabled complete testosterone conversion into estrogen without androstanediol accumulation (anaerobic testosterone oxidation). This finding of aromatase-independent estrogenesis in anaerobic bacteria suggests that the ancient WLP may have contributed to the emergence of estrogens in the early biosphere.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan320, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Yi-Lung Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei106, Taiwan
| | - Ronnie G. Gicana
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei106, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei100, Taiwan
| | - Tsun-Hsien Hsiao
- School of Medicine, National Tsing Hua University, Hsinchu300, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Jeng-Yi Li
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei106, Taiwan
| |
Collapse
|
2
|
Reyes-Umana V, Ewens SD, Meier DAO, Coates JD. Integration of molecular and computational approaches paints a holistic portrait of obscure metabolisms. mBio 2023; 14:e0043123. [PMID: 37855625 PMCID: PMC10746228 DOI: 10.1128/mbio.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Microorganisms are essential drivers of earth's geochemical cycles. However, the significance of elemental redox cycling mediated by microorganisms is often underestimated beyond the most well-studied nutrient cycles. Phosphite, (per)chlorate, and iodate are each considered esoteric substrates metabolized by microorganisms. However, recent investigations have indicated that these metabolisms are widespread and ubiquitous, affirming a need to continue studying the underlying microbiology to understand their biogeochemical effects and their interface with each other and our biosphere. This review focuses on combining canonical techniques of culturing microorganisms with modern omic approaches to further our understanding of obscure metabolic pathways and elucidate their importance in global biogeochemical cycles. Using these approaches, marker genes of interest have already been identified for phosphite, (per)chlorate, and iodate using traditional microbial physiology and genetics. Subsequently, their presence was queried to reveal the distribution of metabolic pathways in the environment using publicly available databases. In conjunction with each other, computational and experimental techniques provide a more comprehensive understanding of the location of these microorganisms, their underlying biochemistry and genetics, and how they tie into our planet's geochemical cycles.
Collapse
Affiliation(s)
- Victor Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Sophia D. Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - David A. O. Meier
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Mao Z, Fleming JR, Mayans O, Frey J, Schleheck D, Schink B, Müller N. AMP-dependent phosphite dehydrogenase, a phosphorylating enzyme in dissimilatory phosphite oxidation. Proc Natl Acad Sci U S A 2023; 120:e2309743120. [PMID: 37922328 PMCID: PMC10636320 DOI: 10.1073/pnas.2309743120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/20/2023] [Indexed: 11/05/2023] Open
Abstract
Oxidation of phosphite (HPO32-) to phosphate (HPO42-) releases electrons at a very low redox potential (E0'= -690 mV) which renders phosphite an excellent electron donor for microbial energy metabolism. To date, two pure cultures of strictly anaerobic bacteria have been isolated that run their energy metabolism on the basis of phosphite oxidation, the Gram-negative Desulfotignum phosphitoxidans (DSM 13687) and the Gram-positive Phosphitispora fastidiosa (DSM 112739). Here, we describe the key enzyme for dissimilatory phosphite oxidation in these bacteria. The enzyme catalyzed phosphite oxidation in the presence of adenosine monophosphate (AMP) to form adenosine diphosphate (ADP), with concomitant reduction of oxidized nicotinamide adenine dinucleotide (NAD+) to reduced nicotinamide adenine dinucleotide (NADH). The enzyme of P. fastidiosa was heterologously expressed in Escherichia coli. It has a molecular mass of 35.2 kDa and a high affinity for phosphite and NAD+. Its activity was enhanced more than 100-fold by addition of ADP-consuming adenylate kinase (myokinase) to a maximal activity between 30 and 80 mU x mg protein-1. A similar NAD-dependent enzyme oxidizing phosphite to phosphate with concomitant phosphorylation of AMP to ADP is found in D. phosphitoxidans, but this enzyme could not be heterologously expressed. Based on sequence analysis, these phosphite-oxidizing enzymes are related to nucleotide-diphosphate-sugar epimerases and indeed represent AMP-dependent phosphite dehydrogenases (ApdA). A reaction mechanism is proposed for this unusual type of substrate-level phosphorylation reaction.
Collapse
Affiliation(s)
- Zhuqing Mao
- Department of Biology, University of Konstanz, Constance78457, Germany
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Constance78457, Germany
| | - Jennifer R. Fleming
- Department of Biology, University of Konstanz, Constance78457, Germany
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Constance78457, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Constance78457, Germany
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Constance78457, Germany
| | - Jasmin Frey
- Department of Biology, University of Konstanz, Constance78457, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Constance78457, Germany
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Constance78457, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Constance78457, Germany
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Constance78457, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Constance78457, Germany
| |
Collapse
|
4
|
Mao Z, Müller N, Borusak S, Schleheck D, Schink B. Anaerobic dissimilatory phosphite oxidation, an extremely efficient concept of microbial electron economy. Environ Microbiol 2023; 25:2068-2074. [PMID: 37525971 DOI: 10.1111/1462-2920.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Phosphite is a stable phosphorus compound that, together with phosphate, made up a substantial part of the total phosphorus content of the prebiotic Earth's crust. Oxidation of phosphite to phosphate releases electrons at an unusually low redox potential (-690 mV at pH 7.0). Numerous aerobic and anaerobic bacteria use phosphite as a phosphorus source and oxidise it to phosphate for synthesis of nucleotides and other phosphorus-containing cell constituents. Only two pure cultures of strictly anaerobic bacteria have been isolated so far that use phosphite as an electron donor in their energy metabolism, the Gram-positive Phosphitispora fastidiosa and the Gram-negative Desulfotignum phosphitoxidans. The key enzyme of this metabolism is an NAD+ -dependent phosphite dehydrogenase enzyme that phosphorylates AMP to ADP. These phosphorylating phosphite dehydrogenases were found to be related to nucleoside diphosphate sugar epimerases. The produced NADH is channelled into autotrophic CO2 fixation via the Wood-Ljungdahl (CO-DH) pathway, thus allowing for nearly complete assimilation of the substrate electrons into bacterial biomass. This extremely efficient type of electron flow connects energy and carbon metabolism directly through NADH and might have been important in the early evolution of life when phosphite was easily available on Earth.
Collapse
Affiliation(s)
- Zhuqing Mao
- Department of Biology, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Constance, Germany
| | - Sabrina Borusak
- Department of Biology, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
5
|
Schwander L, Brabender M, Mrnjavac N, Wimmer JLE, Preiner M, Martin WF. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front Microbiol 2023; 14:1257597. [PMID: 37854333 PMCID: PMC10581274 DOI: 10.3389/fmicb.2023.1257597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Serpentinization in hydrothermal vents is central to some autotrophic theories for the origin of life because it generates compartments, reductants, catalysts and gradients. During the process of serpentinization, water circulates through hydrothermal systems in the crust where it oxidizes Fe (II) in ultramafic minerals to generate Fe (III) minerals and H2. Molecular hydrogen can, in turn, serve as a freely diffusible source of electrons for the reduction of CO2 to organic compounds, provided that suitable catalysts are present. Using catalysts that are naturally synthesized in hydrothermal vents during serpentinization H2 reduces CO2 to formate, acetate, pyruvate, and methane. These compounds represent the backbone of microbial carbon and energy metabolism in acetogens and methanogens, strictly anaerobic chemolithoautotrophs that use the acetyl-CoA pathway of CO2 fixation and that inhabit serpentinizing environments today. Serpentinization generates reduced carbon, nitrogen and - as newer findings suggest - reduced phosphorous compounds that were likely conducive to the origins process. In addition, it gives rise to inorganic microcompartments and proton gradients of the right polarity and of sufficient magnitude to support chemiosmotic ATP synthesis by the rotor-stator ATP synthase. This would help to explain why the principle of chemiosmotic energy harnessing is more conserved (older) than the machinery to generate ion gradients via pumping coupled to exergonic chemical reactions, which in the case of acetogens and methanogens involve H2-dependent CO2 reduction. Serpentinizing systems exist in terrestrial and deep ocean environments. On the early Earth they were probably more abundant than today. There is evidence that serpentinization once occurred on Mars and is likely still occurring on Saturn's icy moon Enceladus, providing a perspective on serpentinization as a source of reductants, catalysts and chemical disequilibrium for life on other worlds.
Collapse
Affiliation(s)
- Loraine Schwander
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Max Brabender
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jessica L. E. Wimmer
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Martina Preiner
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität, Marburg, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
6
|
Nicholls JWF, Chin JP, Williams TA, Lenton TM, O’Flaherty V, McGrath JW. On the potential roles of phosphorus in the early evolution of energy metabolism. Front Microbiol 2023; 14:1239189. [PMID: 37601379 PMCID: PMC10433651 DOI: 10.3389/fmicb.2023.1239189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Energy metabolism in extant life is centered around phosphate and the energy-dense phosphoanhydride bonds of adenosine triphosphate (ATP), a deeply conserved and ancient bioenergetic system. Yet, ATP synthesis relies on numerous complex enzymes and has an autocatalytic requirement for ATP itself. This implies the existence of evolutionarily simpler bioenergetic pathways and potentially primordial alternatives to ATP. The centrality of phosphate in modern bioenergetics, coupled with the energetic properties of phosphorylated compounds, may suggest that primordial precursors to ATP also utilized phosphate in compounds such as pyrophosphate, acetyl phosphate and polyphosphate. However, bioavailable phosphate may have been notably scarce on the early Earth, raising doubts about the roles that phosphorylated molecules might have played in the early evolution of life. A largely overlooked phosphorus redox cycle on the ancient Earth might have provided phosphorus and energy, with reduced phosphorus compounds potentially playing a key role in the early evolution of energy metabolism. Here, we speculate on the biological phosphorus compounds that may have acted as primordial energy currencies, sources of environmental energy, or sources of phosphorus for the synthesis of phosphorylated energy currencies. This review encompasses discussions on the evolutionary history of modern bioenergetics, and specifically those pathways with primordial relevance, and the geochemistry of bioavailable phosphorus on the ancient Earth. We highlight the importance of phosphorus, not only in the form of phosphate, to early biology and suggest future directions of study that may improve our understanding of the early evolution of bioenergetics.
Collapse
Affiliation(s)
- Jack W. F. Nicholls
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Jason P. Chin
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Timothy M. Lenton
- Global Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - John W. McGrath
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| |
Collapse
|
7
|
Frolov EN, Elcheninov AG, Gololobova AV, Toshchakov SV, Novikov AA, Lebedinsky AV, Kublanov IV. Obligate autotrophy at the thermodynamic limit of life in a new acetogenic bacterium. Front Microbiol 2023; 14:1185739. [PMID: 37250036 PMCID: PMC10213532 DOI: 10.3389/fmicb.2023.1185739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
One of the important current issues of bioenergetics is the establishment of the thermodynamic limits of life. There is still no final understanding of what is the minimum value of the energy yield of a reaction that is sufficient to be used by an organism (the so-called "biological quantum of energy"). A reasonable model for determination of the minimal energy yield would be microorganisms capable of living on low-energy substrates, such as acetogenic prokaryotes. The most prominent metabolic feature of acetogens is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates, which is hardly competitive in environments. Most probably, that is why only facultative autotrophic acetogens have been known so far. Here, we describe the first obligately autotrophic acetogenic bacterium Aceticella autotrophica gen. nov., sp. nov., strain 3443-3AcT. Phylogenetically, the new genus falls into a monophyletic group of heterotrophic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, and Caldanaerobacter (hereinafter referred to as TTC group), where the sole acetogenic representative has so far been the facultatively autotrophic Thermoanaerobacter kivui. A. autotrophica and T. kivui both are acetogens employing energy-converting hydrogenase (Ech-acetogens) that are likely to have inherited the acetogenesis capacity vertically from common ancestor. However, their acetogenic machineries have undergone different adjustments by gene replacements due to horizontal gene transfers from different donors. Obligate autotrophy of A. autotrophica is associated with the lack of many sugar transport systems and carbohydrate catabolism enzymes that are present in other TTC group representatives, including T. kivui.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra V. Gololobova
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V. Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Andrei A. Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Alexander V. Lebedinsky
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Mechanism of Electron Acceptor Promoting Propionic Acid Transformation in Anaerobic Fermentation. ENERGIES 2022. [DOI: 10.3390/en15113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve the conversion efficiency of propionic acid in the post-anaerobic fermentation of biogas slurry, the anaerobic fermentation process using biogas slurry with a high acid content was simulated in an anaerobic reactor at 35 ± 0.5 °C using sodium propionate as the sole substrate. The effects of different electron acceptors (NO3−, SO42− and Fe3+) on propionic acid conversion and the succession of microbial community structures were investigated. The results showed that the experimental group with the electron acceptor NO3− exhibited the best anaerobic fermentation effect, with a maximum propionate removal rate of 94%, which was 36% higher than the control group without an electron acceptor. The maximum methane production rate was 307.6 mL/g COD, an increase of 30% compared with the control group. Thauera, Aquabacterium, Desulfomicrobium, Clostridium_sensu_stricto_1, and other functional microorganisms were all enriched. The dominant functional genes related to redox reactions, such as K03711, K00384, and K03406, were highly enriched in the reactor when Fe3+ and NO3− were added. The study shows that adding an electron acceptor can enhance interactions between microorganisms, achieve efficient propionate conversion, and improve methane production in the system.
Collapse
|