1
|
Botero J, Peeters C, De Canck E, Laureys D, Vandamme P. Eupransor demetentiae gen. nov., sp. nov., a novel fructophilic lactic acid bacterium from bumble bees. Int J Syst Evol Microbiol 2024; 74. [PMID: 38833293 DOI: 10.1099/ijsem.0.006409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Strain LMG 33000T was isolated from a Bombus lapidarius gut sample. It shared the highest percentage 16S rRNA sequence identity, average amino acid identity, and amino acid identity of conserved genes with Convivina intestini LMG 28291T (95.86 %, 69.9 and 76.2 %, respectively), and the highest percentage OrthoANIu value with Fructobacillus fructosus DSM 20349T (71.4 %). Phylogenomic analyses by means of 107 or 120 conserved genes consistently revealed Convivina as nearest neighbour genus. The draft genome of strain LMG 33000T was 1.44 Mbp in size and had a DNA G+C content of 46.1 mol%. Genomic and physiological analyses revealed that strain LMG 33000T was a typical obligately fructophilic lactic acid bacterium that lacked the adhE and aldh genes and that did not produce ethanol during glucose or fructose metabolism. In contrast, Convivina species have the adhE and aldh genes in their genomes and produced ethanol from glucose and fructose metabolism, which is typical for heterofermentative lactic acid bacteria. Moreover, strain LMG 33000T exhibited catalase activity, an unusual characteristic among lactic acid bacteria, that is not shared with Convivina species. Given its position in the phylogenomic trees, and the difference in genomic percentage G+C content and in physiological and metabolic characteristics between strain LMG 33000T and Convivina species, we considered it most appropriate to classify strain LMG 33000T into a novel genus and species within the Lactobacillaceae family for which we propose the name Eupransor demetentiae gen. nov., sp. nov., with LMG 33000T (=CECT 30958T) as the type strain.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - David Laureys
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Botero J, Peeters C, De Canck E, Laureys D, Wieme AD, Cleenwerck I, Depoorter E, Praet J, Michez D, Smagghe G, Vandamme P. A comparative genomic analysis of Fructobacillus evanidus sp. nov. from bumble bees. Syst Appl Microbiol 2024; 47:126505. [PMID: 38564984 DOI: 10.1016/j.syapm.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The increase in studies on bee microbiomes is prompted by concerns over global pollinator declines. Bumble bees host core and non-core microbiota which may contribute to increased lifetime fitness. The presence of Fructobacillus in the gut microbiomes of bumble bee workers, or the replacement of core symbionts with Fructobacillus bacteria, has been considered a marker of dysbiosis. A phylogenomic analysis and functional genomic characterization of the genomes of 21 Fructobacillus isolates from bumble bees demonstrated that they represented four species, i.e. Fructobacillus cardui, Fructobacillus fructosus, Fructobacillus tropaeoli, and the novel species Fructobacillus evanidus sp. nov. Our results confirmed and substantiated the presence of two phylogenetically and functionally distinct Fructobacillus species clades that differ in genome size, percentage G + C content, the number of coding DNA sequences and metabolic characteristics. Clade 1 and clade 2 species differed in amino acid and, to a lesser extent, in carbohydrate metabolism, with F. evanidus and F. tropaeoli genomes featuring a higher number of complete metabolic pathways. While Fructobacillus genomes encoded genes that allow adhesion, biofilm formation, antibacterial activity and detoxification, other bacteria isolated from the bumble bee gut appeared better equipped to co-exist with the bumble bee host. The isolation and identification of multiple Fructobacillus species from several bumble bee gut samples in the present study also argued against a specific partnership between Fructobacillus species and their bumble bee hosts.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - David Laureys
- Innovation Centre for Brewing & Fermentation, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Ilse Cleenwerck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Jessy Praet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000 Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Andrade-Velásquez A, Hernández Sánchez H, Dorantes-Álvarez L, Palmeros-Sánchez B, Torres-Moreno R, Hernández-Rodríguez D, Melgar-Lalanne G. Honey characterization and identification of fructophilic lactic acid bacteria of fresh samples from Melipona beecheii, Scaptotrigona pectoralis, Plebeia llorentei, and Plebeia jatiformis hives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Stingless bees are essential to preser tropical ecosystems. They pollinate native flora, producing honey with properties for traditional health uses. Lactic acid bacteria spontaneously ferment honey in stingless bee honey (SBH). This study aims to determine the main physicochemical characteristics of Melipona beecheii, Scraptotrigona pectoralis, Plebeia jatiformis and Plebeia llorentei honey and to isolate and identify FLAB present in SBH samples. The physicochemical properties of SBH, such as color, pH, acidity, sugars, protein, total soluble solids, water activity, total polyphenols, and antioxidant activity, were determined since these parameters can be related to the presence of some bacteria groups, and with health benefits for humans and the hive ecosystems. FLAB harvested from honey, taken directly from storing pots of the hives, were identified by 16S ribosomal RNA sequencing and preserved for future biotechnological use due to their resistance to non-ionic osmotic stress. The results showed significant differences in the physicochemical characteristics of SBH samples. Seven FLAB from four stingless bee species were identified as Fructobacillus pseudoficulneus and F. tropaeoli. In addition, three other strains of Fructilactobacillus spp. were identified only at the genus level. All species showed the ability to grow under different carbon sources, resulting in negative hemolysis and sensitivity to cefuroxime, erythromycin, and chloramphenicol. To the best of our knowledge, this is the first time that the physicochemical and FLAB characterization of SBH from P. jatiformis and P. llorentei has been reported. Therefore, the future following research should be focused on the environmental, health and food biotechnological applications implications of FLAB from SBH.
Collapse
|
4
|
Oliphant SA, Watson-Haigh NS, Sumby KM, Gardner JM, Jiranek V. Fructilactobacillus cliffordii sp. nov. , Fructilactobacillus hinvesii sp. nov., Fructilactobacillus myrtifloralis sp. nov., Fructilactobacillus carniphilus sp. nov. and Fructobacillus americanaquae sp. nov., five novel lactic acid bacteria isolated from insects or flowers of Kangaroo Island, South Australia. Int J Syst Evol Microbiol 2023; 73. [PMID: 36795096 DOI: 10.1099/ijsem.0.005730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Six strains, KI11_D11T, KI4_B1, KI11_C11T, KI16_H9T, KI4_A6T and KI3_B9T, were isolated from insects and flowers on Kangaroo Island, South Australia. On the basis of 16S rRNA gene phylogeny, strains KI11_D11T, KI4_B1, KI11_C11T, KI16_H9T, KI4_A6T were found to be closely related to Fructilactobacillus ixorae Ru20-1T. Due to the lack of a whole genome sequence for this species, whole genome sequencing of Fructilactobacillus ixorae Ru20-1T was undertaken. KI3_B9T was found to be closely related to Fructobacillus tropaeoli F214-1T. Utilizing core gene phylogenetics and whole genome analyses, such as determination of AAI, ANI and dDDH, we propose that these six isolates represent five novel species with the names Fructilactobacillus cliffordii (KI11_D11T= LMG 32130T = NBRC 114988T), Fructilactobacillus hinvesii (KI11_C11T = LMG 32129T = NBRC 114987T), Fructilactobacillus myrtifloralis (KI16_H9T= LMG 32131T = NBRC 114989T) Fructilactobacillus carniphilus (KI4_A6T = LMG 32127T = NBRC 114985T) and Fructobacillus americanaquae (KI3_B9T = LMG 32124T = NBRC 114983T). Chemotaxonomic analyses detected no fructophilic characters for these strains of member of the genus Fructilactobacillus. KI3_B9T was found to be obligately fructophilic, similarly to its phylogenetic neighbours in the genus Fructobacillus. This study represents the first isolation, to our knowledge, of novel species in the family Lactobacillaceae from the Australian wild.
Collapse
Affiliation(s)
- Scott A Oliphant
- Department of Wine Science, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia, 5064, Australia
| | - Nathan S Watson-Haigh
- South Australian Genomics Centre, SAHMRI, North Terrace, Adelaide, SA 5000, Australia.,Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Krista M Sumby
- Department of Wine Science, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia, 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Glen Osmond, South Australia, 5064, Australia
| | - Jennifer M Gardner
- Department of Wine Science, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia, 5064, Australia
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia, 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
5
|
Chen YS, Wang LT, Lin ST, Lee YS, Chang YC, Wu HC, Liao CY, Chen WH, Deng JN, Wang YH. Fructobacillus apis sp. nov., isolated from the gut of honeybee ( Apis mellifera). Int J Syst Evol Microbiol 2022; 72. [PMID: 36748588 DOI: 10.1099/ijsem.0.005613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A Gram-positive, facultatively anaerobic, catalase-negative, fructose-dependent strain (W13T) was isolated from the gut of honeybee (Apis mellifera). Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain W13T represents a distinct line of descent within the genus Fructobacillus, with the closest neighbours being Fructobacillus broussonetiae BCRC 81240T (98.9 % sequence similarity) and Fructobacillus durionis DSM 19113T (96.8 % sequence similarity). Comparative sequencing of the additional phylogenetic markers rpoC and recA confirmed the 16S rRNA gene tree topology. The complete genome of strain W13T consisted of 1 292 712 bp with a G+C content of 48.3 mol%. Pairwise comparisons of the average nucleotide identity values and digital DNA-DNA hybridization values between the genomes of W13T and its close phylogenetic neighbours, F. broussonetiae BCRC 81240T and F. durionis DSM 19113T, resulted in 76.2-84.1 % and 20.2-27.6 %, respectively. The main cellular fatty acids of strain W13T were C16 : 0, C18 : 1 ω9c and C18 : 1 ω7c. Thus, we propose a novel species within the genus Fructobacillus, with the name Fructobacillus apis sp. nov. and the type strain is W13T (= NBRC 115637T=BCRC 81365T).
Collapse
Affiliation(s)
- Yi-Sheng Chen
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Li-Ting Wang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Shih-Ting Lin
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan, ROC
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Yu-Chung Chang
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Hui-Chung Wu
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Chia-Yu Liao
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Wei-Hua Chen
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Jin-Nan Deng
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Yu-Hsuan Wang
- Department of Biotechnology, Ming Chuan University, No. 5, De-Ming Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| |
Collapse
|
6
|
Gallus MK, Beer I, Ivleva NP, Ehrmann MA. Fructobacillus cardui sp. nov., isolated from a thistle ( Carduus nutans) flower. Int J Syst Evol Microbiol 2022; 72. [PMID: 36260500 DOI: 10.1099/ijsem.0.005553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Fructobacillus strain was isolated from the flower of a nodding thistle (Carduus nutans) collected in Bavaria, Germany. The strain is Gram-positive, rod-shaped, non-motile, non-sporulating, catalase- and oxidase-negative, and facultatively anaerobic. Growth can be detected at 10-37 °C and pH 4 to 9. The genome size is about 1.56 Mbp and the G+C content is 43.76 mol%. Assignment to the genus Fructobacillus was done by average nucleotide identity (ANI), 16S rRNA gene sequence and multilocus sequence analyses. Calculations of ANI and digital DNA-DNA hybridization values indicate a novel species with Fructobacillus tropaeoli DSM 23246T (93.58% ANI and 57.9 % dDDH) being its closest relative. Therefore, a new species named Fructobacillus cardui sp. nov. with TMW 2.2452T (=DSM 113480T=CECT 30515T) as type strain is proposed.
Collapse
Affiliation(s)
- Marion K Gallus
- Chair of Microbiology, Technical University of Munich, Munich, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Irina Beer
- Chair of Microbiology, Technical University of Munich, Munich, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Natalia P Ivleva
- Chair of Microbiology, Technical University of Munich, Munich, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich, Munich, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| |
Collapse
|