1
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
2
|
Xu L, Zhao Y, Li Y, Sun JQ. Genomic and transcriptomic analyses provide new insights into the allelochemical degradation preference of a novel Acinetobacter strain. ENVIRONMENTAL RESEARCH 2024; 246:118145. [PMID: 38191044 DOI: 10.1016/j.envres.2024.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
A novel n-alkane- and phenolic acid-degrading Acinetobacter strain (designated C16S1T) was isolated from rhizosphere soil. The strain was identified as a novel species named Acinetobacter suaedae sp. nov. using a polyphasic taxonomic approach. Strain C16S1T showed preferential degradation of three compounds: p-hydroxybenzoate (PHBA) > ferulic acid (FA) > n-hexadecane. In a medium containing two or three of these allelochemicals, coexisting n-hexadecane and PHBA accelerated each other's degradation and that of FA. FA typically hindered the degradation of n-hexadecane but accelerated PHBA degradation. The upregulated expression of n-hexadecane- and PHBA-degrading genes induced, by their related substrates, was mutually enhanced by coexisting PHBA or n-hexadecane; in contrast, expression of both gene types was reduced by FA. Coexisting PHBA or n-hexadecane enhanced the upregulation of FA-degrading genes induced by FA. The expressions of degrading genes affected by coexisting chemicals coincided with the observed degradation efficiencies. Iron shortage limited the degradation efficiency of all three compounds and changed the degradation preference of Acinetobacter. The present study demonstrated that the biodegradability of the chemicals, the effects of coexisting chemicals on the expression of degrading genes and the strain's growth, the shortage of essential elements, and the toxicity of the chemicals were the four major factors affecting the removal rates of the coexisting allelochemicals.
Collapse
Affiliation(s)
- Lian Xu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China; Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yang Zhao
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yue Li
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
3
|
Xu L, Wei HM, Sun YN, Wu Q, Gao XY, Shen B, Sun JQ. Halomonas rhizosphaerae sp. nov. and Halomonas kalidii sp. nov., two novel moderate halophilic phenolic acid-degrading species isolated from saline soil. Syst Appl Microbiol 2024; 47:126488. [PMID: 38278082 DOI: 10.1016/j.syapm.2024.126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Four vanillic acid-degrading bacterial strains, named LR5S13T, LR5S20, and M4R5S39T and LN1S58, were isolated from Kalidium cuspidatum rhizosphere and bulk soils, respectively. Phylogenetic analysis based on 16S rRNA gene as well as core genome revealed that LR5S13T and LR5S20 clustered closely with each other and with Halomonas ventosae Al12T, and that the two strains shared the highest similarities (both 99.3 %) with H. ventosae Al12T, in contrast, M4R5S39T and LN1S58 clustered together and with Halomonas heilongjiangensis 9-2T, and the two strains shared the highest similarities (99.4 and 99.2 %, respectively) with H. heilongjiangensis 9-2T. The average nucleotides identities based on BLAST (ANIb) and digital DNA-DNA hybridization (dDDH) values of strains LR5S13T to LR5S20, and M4R5S39T to LN1S58, were both higher than the threshold values for delineation of a species. The ANIb and dDDH values of the four strains to their closely relatives were lower than the threshold values. All four strains take phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids, Summed Feature 8, Summed Feature 3, and C16:0 as the major fatty acids. Based on the phylogenetic and phenotypic results, the four strains should be classified as two novel Halomonas species. Therefore, Halomonas rhizosphaerae sp. nov. (type strain LR5S13T = KCTC 8016T = CGMCC 1.62049T) and Halomonas kalidii (type strain M4R5S39T = KCTC 8015T = CGMCC 1.62047T) are proposed. The geographical distribution analysis based on 16S rRNA gene revealed that the two novel species are widely distributed across the globe, specifically in highly saline habits, especially in Central and Eastern Asia.
Collapse
Affiliation(s)
- Lian Xu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hua-Mei Wei
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Ye-Nan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Qi Wu
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiao-Yan Gao
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Biao Shen
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
4
|
Ding WJ, Xu L, Zhao Y, Sun JQ. Aquibacillus rhizosphaerae sp. nov., an Indole Acetic Acid (IAA)-producing Halotolerant Bacterium Isolated from the Rhizosphere Soil of Kalidium cuspidatum. Curr Microbiol 2023; 80:404. [PMID: 37930394 DOI: 10.1007/s00284-023-03543-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
A bacterium (named strain LR5S19T) was isolated from the rhizosphere soil of the halophyte Kalidium cuspidatum in Baotou, Inner Mongolia, China. Strain LR5S19T was Gram-stain-positive, motile with a polar flagellum, rod shaped, and spore forming at the terminal position in swollen sporangia, and it grew at 10-40 ℃ (optimum 30 ℃), pH 6.0-9.0 (optimum pH 7.0), and in the presence of 1.0-15.0% (w/v) NaCl (optimum 2.0%). The phylogenetic analysis of the 16S rRNA gene showed that strain LR5S19T shared the highest similarity (96.7%) with A. koreensis JCM 12387T, followed by A. kalidii HU2P27T (96.2%), A. sediminis BH258T (96.1%), and 'A. salsiterrae' 3ASR75-54T (96.0%). The ANIb, AAI and dDDH values between strain LR5S19T and its closely related type strains were 69.3-73.8%, 65.4-72.4% and 19.2-20.3%, respectively. The major polar lipids in strain LR5S19T consisted of diphosphatidylglycerol, phosphatidylglycerol, and three unidentified phospholipids, while MK-7 was the major respiratory quinone. The major fatty acids of the strain were anteiso-C15:0 and iso-C15:0. Based on phylogenomic and phenotypic results, strain LR5S19T should be classified as a novel species within the genus Aquibacillus, for which Aquibacillus rhizosphaerae sp. nov. is proposed. The type strain is LR5S19T (= CGMCC 1.62028T = KCTC 43434T). The comparative genomic analysis revealed that all eight members of Aquibacillus could utilize D-glucose via the glycolysis-gluconeogenesis pathway or the pentose phosphate pathway and use the tricarboxylic acid cycle as the metabolic center. The potassium ion transport proteins and compatible solute synthesis pathways in all the members likely also help them cope with hypersaline environments.
Collapse
Affiliation(s)
- Wen-Jing Ding
- Laboratory for Microbial Resources, Department of Environmental Engineering, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Lian Xu
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhao
- Laboratory for Microbial Resources, Department of Environmental Engineering, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, Department of Environmental Engineering, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
5
|
Feng JY, Xu L, Tang SK, Sun JQ. Corynebacterium kalidii sp. nov, an endophyte from a shoot of the halophyte Kalidium cuspidatum. Arch Microbiol 2022; 204:471. [PMID: 35819727 DOI: 10.1007/s00203-022-03101-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
A Gram-stain-positive, non-motile, rod-shaped bacterial strain designated LD5P10T was isolated from a root of Kalidium cuspidatum, in Tumd Right Banner, Inner Mongolia, China. The strain grew at 4-40 ℃ (optimum 30 ℃), and pH 5.0-10.0 (optimum pH 8.0), and in the presence of 0-16.0% (w/v) NaCl (optimum 2.0%). The strain was positive for catalase, and urease, and negative for nitrate reduction, and oxidase. The phylogenetic trees based on the 16S rRNA gene sequences and the whole genome sequence both revealed that strain LD5P10T clustered tightly with Corynebacterium glyciniphilum AJ 3170T and shared 98.1, 98.1, and < 98.1% of the 16S rRNA gene sequence similarities with strains C. glyciniphilum AJ 3170T, C. variabile DSM 20132T, and all the other current type strains. Strain LD5P10T contained MK-9 as the major respiratory quinone. Its major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphoglycolipid, two unidentified lipids, and two unidentified phospholipids. Its major fatty acids were C16:0 and C18:1 ω9c. The genomic DNA G + C content was 69.0%. The average nucleotide identity based on BLAST (ANIb), amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values of strain LD5P10T to C. glyciniphilum AJ 3170T and C. variabile DSM 20132T were 82.9 and 76.4%, 85.3 and 69.4%, and 25.8 and 20.9%, respectively. The phylogenetic, physiological, and phenotypic results allowed the discrimination of strain LD5P10T from its phylogenetic relatives. Corynebacterium kalidii sp. nov. is, therefore, proposed with strain LD5P10T (= CGMCC 1.19144T = JCM 35048T) as the type strain.
Collapse
Affiliation(s)
- Jia-Yi Feng
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Lian Xu
- Jiangsu Key Laboratory for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu-Kun Tang
- Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, China.
| | - Ji-Quan Sun
- Laboratory for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
6
|
Li LF, Xu L, Li WH, Sun JQ. Sinomicrobium kalidii sp. nov., an indole-3-acetic acid-producing endophyte from a shoot of halophyte Kalidium cuspidatum. Int J Syst Evol Microbiol 2022; 72. [PMID: 35819407 DOI: 10.1099/ijsem.0.005452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To better understand the effects of endophytic bacteria on halophytes, a bacteria that produced indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase, designated HD2P242T, was isolated from a shoot of Kalidium cuspidatum collected in Tumd Right Banner, Inner Mongolia, PR China. The cells of strain HD2P242T were Gram-stain-negative, strictly aerobic, motile by gliding, non-spore-forming and rod-shaped. Strain HD2P242T grew at pH 6.0-9.0 (optimum, pH 7.0) and 10-45 °C (optimum 37 °C), in the presence of 0-8 % (w/v) NaCl (optimum, 4 %). The strain was positive for oxidase and catalase. The phylogenetic trees based on the 16S rRNA gene sequences and the whole genome sequences both showed that strain HD2P242T clustered with Sinomicrobium pectinilyticum 5DNS001T and S. oceani SCSIO 03483T, and had 95.6, 94.3 and <94.3 % 16S rRNA gene similarities to S. pectinilyticum 5DNS001T, S. oceani SCSIO 03483T and all the other current type strains. Strain HD2P242T contained menaquinone 6 as its sole respiratory quinone. Its major polar lipids were phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids and an unidentified lipid. The major fatty acids were iso-C17 : 0, iso-C16 : 0 3-OH, anteiso-C17 : 0 and summed feature 6 (C19 : 1 ω9c and/or C19 : 1 ω11c). The genome consisted of a 5 364 211 bp circular chromosome, with a G+C content of 45.1 mol%, predicting 4391 coding sequence genes, 47 tRNA genes and two rRNA operons. The average nucleotide identity based on blast and the digital DNA-DNA hybridization values of strain HD2P242T with S. oceani SCSIO 03483T and S. pectinilyticum 5DNS001T were 73.8 and 77.0%, and 22.3 and 22.2%, respectively. The comparative genome analysis showed that the pan-genomes of strain HD2P242T and three Sinomicrobium type strains possessed 4236 clusters, whereas the core genome possessed 2162 clusters, which accounted for 52.3 % of all the clusters. The genomic analysis revealed that all four Sinomicrobium members could utilize d-glucose by the glycolysis-gluconeogenesis pathway or the pentose phosphate pathway. The tricarboxylic acid cycle was utilized as a metabolic centre. The phylogenetic, physiological and phenotypic characteristics allowed the discrimination of strain HD2P242T from its phylogenetic relatives. Therefore, Sinomicrobium kalidii sp. nov. is proposed, and the type strain is HD2P242T (=CGMCC 1.19025T=KCTC 92136T).
Collapse
Affiliation(s)
- Lu-Fan Li
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, PR China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, PR China
| | - Wen-Hao Li
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, PR China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, PR China
| |
Collapse
|