1
|
Šeruga Musić M, Polak B, Drčelić M, Pei SC, Kuo CH. Sequencing and comparative analyses of ' Candidatus Phytoplasma solani' genomes reveal diversity of effectors and potential mobile units. Microb Genom 2025; 11:001401. [PMID: 40294126 PMCID: PMC12047186 DOI: 10.1099/mgen.0.001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Phytoplasmas (genus 'Candidatus Phytoplasma') encompass a group of uncultivated bacteria affecting numerous plant species and causing significant damage in agriculture worldwide. They have a dual parasitic cycle, including colonization of both plant phloem and insect cells. Their genomes are small, diverse, repetitive, prone to rearrangements and harbour transposon-like elements known as potential mobile units (PMUs). In the Euro-Mediterranean region, 'Ca. P. solani' is an important species due to its broad range of plant hosts and insect vectors. To provide insights into the genomic diversity of this species, particularly the repertoire of putative effectors and PMUs, this study conducted genome sequencing and analyses of two 'Ca. P. solani' strains originating from different plants and transmitted by different insects. Based on de novo assembly, we obtained 19 contigs totalling 656 141 bp for strain STOL and 28 contigs totalling 707 036 bp for strain ST19. The prevalence of repetitive sequences and PMUs contributed to the fragmentation of these draft assemblies. The annotation identified 28 and 26 genes that encode putative secreted proteins in these two strains, respectively, including several homologues of previously characterized phytoplasma effectors. Our comparative analyses further identified species- and strain-specific genes. Frequently, genes that encode putative secreted proteins and effectors were found within PMU-like regions in both genomes. Moreover, strain STOL showed characteristics of a more reduced genome, having fewer PMU-like repetitive elements and genome rearrangements, while strain ST19 exhibited a higher level of sequence divergence in its PMU genes. The high levels of genomic diversity among 'Ca. P. solani' strains suggested rapid evolution of this species, which may contribute to its wide host range and adaptability potential. This study provides novel data on the diversification of 'Ca. P. solani' genomes. These results provide a foundation for future functional studies of putative effectors and their interactions with host targets, which could facilitate deciphering the pathogenicity strategies of this successful and versatile pathogen.
Collapse
Affiliation(s)
- Martina Šeruga Musić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Bruno Polak
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marina Drčelić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Shen-Chian Pei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
Song S, Wang Q, Huo L, Xie L, Chen J, Cui H, Dai Z, Kang J, Li Y, Guo W, Chen J, Kang L, Zhang X. The phytoplasma (Candidatus Phytoplasma arecae) is the crucial pathogen to cause areca palm yellow leaf disease. Sci Bull (Beijing) 2025; 70:847-851. [PMID: 39490329 DOI: 10.1016/j.scib.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Shuangwei Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxiao Huo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Liqiang Xie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jinrui Kang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Hebei University, Baoding 071002, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| |
Collapse
|
3
|
Esmaeilzadeh-Hosseini SA, Babaei G, Mateeti ST, Pacini F, Bertaccini A. Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants. Microorganisms 2025; 13:645. [PMID: 40142537 PMCID: PMC11944297 DOI: 10.3390/microorganisms13030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Persimmon (Diospyros kaki) plants showing yellowing, reddening, die-back, and decline symptoms were observed in Mehriz (Yazd province), Iran. Total DNAs, extracted from samples collected from symptomatic and symptomless plants, were subjected to direct and nested PCR, amplifying the 16S rRNA gene of phytoplasmas using specific primer pairs. PCR amplicons of expected lengths were obtained, mainly from nested PCR, and only from samples collected from symptomatic plants. Real and virtual RFLP, phylogenetic, and DNA identity analyses of the partial 16S rRNA gene sequences suggested the presence of diverse phytoplasmas in the analyzed samples. The identified phytoplasmas were referable to 'Candidatus Phytoplasma omanense' (16SrXXIX group) and 'Ca. P. australasiae = australasiaticum' (16SrII-D subgroup). The results of the sampling and testing highlight the urgent need for an accurate survey to verify the presence and identity of phytoplasmas in symptomatic fruit trees in Iran, in order to be able to plan appropriate management strategies. Further investigations of the possible role of 'Ca. P. omanense' strains as an emerging threat to fruit orchards in Iran should also be performed.
Collapse
Affiliation(s)
- Seyyed Alireza Esmaeilzadeh-Hosseini
- Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Yazd 8915813156, Iran
| | - Ghobad Babaei
- Plant Protection Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord 8813657351, Iran;
| | - Sri Tej Mateeti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.T.M.); (F.P.)
| | - Francesco Pacini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.T.M.); (F.P.)
| | - Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.T.M.); (F.P.)
| |
Collapse
|
4
|
Toth R, Huettel B, Varrelmann M, Kube M. The 16SrXII-P Phytoplasma GOE Is Separated from Other Stolbur Phytoplasmas by Key Genomic Features. Pathogens 2025; 14:180. [PMID: 40005555 PMCID: PMC11857868 DOI: 10.3390/pathogens14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The syndrome "bassess richesses" is a vector-borne disease of sugar beet in Germany. The gammaproteobacterium 'Candidatus Arsenophonus phytopathogenicus' causes reduced sugar content and biomass, growth abnormalities, and yellowing. Co-infection with the 16SrXII-P stolbur phytoplasmas often leads to more severe symptoms and a risk of complete economic loss. This yellowing agent of the Mollicutes class had not been described before, so its differences from other stolbur phytoplasmas remained unanswered. The genome of strain GOE was sequenced, providing a resource to analyze its characteristics. Phylogenetic position was revised, genome organization was compared, and functional reconstructions of metabolic and virulence factors were performed. Average nucleotide identity analysis indicates that GOE represents a new 'Ca. Phytoplasma' species. Our results show that GOE is also distinct from other stolbur phytoplasmas in terms of smaller genome size and G+C content. Its reductive evolution is reflected in conserved membrane protein repertoire and minimal metabolism. The encoding of a riboflavin kinase indicates a lost pathway of phytoplasmas outside the groups 16SrXII and 16SrXIII. GOE shows a complete tra5 transposon harboring orthologs of SAP11, SAP54, and SAP05 effectors indicating an original phytoplasma pathogenicity island. Our results deepen the understanding of phytoplasma evolution and reaffirm the heterogeneity of stolbur phytoplasmas.
Collapse
Affiliation(s)
- Rafael Toth
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Bruno Huettel
- Max Planck-Genome-Center Cologne, 50829 Cologne, Germany;
| | - Mark Varrelmann
- Institute of Sugar Beet Research (IfZ), 37079 Göttingen, Germany;
| | - Michael Kube
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
5
|
Boopathi N, Karthikeyan G, Raveendran M, Johnson I, Maruthasalam S, Srinivasan T, Manimekalai R. Characterization of phytoplasma associated with wilt disease in coconut and approaches for its sensitive diagnostics. J Microbiol Methods 2025; 228:107072. [PMID: 39592060 DOI: 10.1016/j.mimet.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Coconut wilt associated with phytoplasma presence is a serious disease that threatens the coconut plantations in South India. Symptoms progress rapidly and cause complete destruction of coconut palm which results in severe economic loss to farmers. Survey in the areas of Thanjavur and Coimbatore districts revealed disease incidence upto 2.5 % and the affected palms exhibited unique symptoms, which differ from the root wilt disease symptoms reported so far. Nested PCR with universal primers and multilocus characterization of tuf and certain rp genes confirmed the presence of phytoplasmas. The 16S rRNA ribosomal gene sequence-based identification assigned the coconut wilt phytoplasma to the 'Candidatus Phytoplasma asteris' species. To achieve timely management of the disease and also to check its spread, Loop Mediated Isothermal Amplification (LAMP) and real-time LAMP diagnostics by targeting the 16S rRNA gene, were established for rapid and specific detection of phytoplasma presence. PCR with LAMP outer primers was carried out and sequence analysis confirmed the amplification of the 16S rRNA gene of phytoplasma. LAMP assay positive samples showed the color shift from violet to blue and was further confirmed by the ladder-like bands produced during the amplification. Diseased samples also generated a unique annealing peak at 87 ± 0.5 °C in the real-time LAMP assay. The LAMP protocol devised will be useful for quick and sensitive detection of this phytoplasma and it has potential application to detect phytoplasma presence in suspected coconut palms and to allow screening of nursery seedlings to ensure disease free planting.
Collapse
Affiliation(s)
- Natesan Boopathi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gandhi Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Iruthayasamy Johnson
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Thulasy Srinivasan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | | |
Collapse
|
6
|
Yan XH, Pei SC, Yen HC, Blanchard A, Sirand-Pugnet P, Baby V, Gasparich GE, Kuo CH. Delineating bacterial genera based on gene content analysis: a case study of the Mycoplasmatales-Entomoplasmatales clade within the class Mollicutes. Microb Genom 2024; 10:001321. [PMID: 39546405 PMCID: PMC11567158 DOI: 10.1099/mgen.0.001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Genome-based analysis allows for large-scale classification of diverse bacteria and has been widely adopted for delineating species. Unfortunately, for higher taxonomic ranks such as genus, establishing a generally accepted approach based on genome analysis is challenging. While core-genome phylogenies depict the evolutionary relationships among species, determining the correspondence between clades and genera may not be straightforward. For genotypic divergence, the percentage of conserved proteins and genome-wide average amino acid identity are commonly used, but often do not provide a clear threshold for classification. In this work, we investigated the utility of global comparisons and data visualization in identifying clusters of species based on their overall gene content and rationalized that such patterns can be integrated with phylogeny and other information such as phenotypes for improving taxonomy. As a proof of concept, we selected 177 representative genome sequences from the Mycoplasmatales-Entomoplasmatales clade within the class Mollicutes for a case study. We found that the clustering patterns corresponded to the current understanding of these organisms, namely the split into three above-genus groups: Hominis, Pneumoniae and Spiroplasma-Entomoplasmataceae-Mycoides. However, at the genus level, several important issues were found. For example, recent taxonomic revisions that split the Hominis group into three genera and Entomoplasmataceae into five genera are problematic, as those newly described or emended genera lack clear differentiations in gene content from one another. Moreover, several cases of misclassification were identified. These findings demonstrated the utility of this approach and its potential application to other bacteria.
Collapse
Affiliation(s)
- Xiao-Hua Yan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| | - Shen-Chian Pei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| | - Hsi-Ching Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| | - Alain Blanchard
- INRAE, BFP, UMR 1332, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | | | - Vincent Baby
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Montreal, Quebec J2S 2M2, Canada
| | - Gail E. Gasparich
- Office of Provost and Senior Vice President for Academic Affairs, Millersville University, Millersville, PA 17551, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan, ROC
| |
Collapse
|
7
|
Fukatsu T, Kakizawa S, Harumoto T, Sugio A, Kuo CH. Editorial: Spiroplasma, Mycoplasma, Phytoplasma, and other genome-reduced and wall-less mollicutes: their genetics, genomics, mechanics, interactions and symbiosis with insects, other animals and plants. Front Microbiol 2024; 15:1477536. [PMID: 39282558 PMCID: PMC11392750 DOI: 10.3389/fmicb.2024.1477536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Webster C, Kehoe M, Bond S, Rodoni B, Constable FE. 'Candidatus Phytoplasma vignae', assigning a species description to a long-known phytoplasma occurring in northern Australia. Int J Syst Evol Microbiol 2024; 74:006502. [PMID: 39190596 PMCID: PMC11349051 DOI: 10.1099/ijsem.0.006502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Gene- and genome-based approaches were used to determine whether Vigna little leaf (ViLL) phytoplasma, which occurs in northern Australia, is a distinct 'Candidatus Phytoplasma' species. The ViLL 16S rRNA gene sequences exhibited the highest known similarity to species in the 16SrXXIX-A and 16SrIX-D subgroups, namely 'Candidatus Phytoplasma omanense' (98.03-98.10%) and 'Candidatus Phytoplasma phoenicium' (96.87-97.20%), respectively. A total of 48 single-copy orthologue genes were identified to be shared among the two draft ViLL phytoplasma genomes, 30 publicly available phytoplasma genomes, and one Acholeplasma laidlawii genome as the outgroup taxon. Phylogenomic assessments using the 48 shared single-copy orthologue genes supported that ViLL and 'Ca. Phytoplasma phoenicium' were closely related yet distinct species. The 16S rRNA gene sequence analysis and phylogenomic assessment indicate that ViLL phytoplasmas are a distinct taxon. As such, a novel species, 'Candidatus Phytoplasma vignae', is proposed. Strain BAWM-336 (genome accession number JAUZLI000000000) detected in Momordica charantia (bitter melon) serves as the reference strain of this species, with infected plant material deposited in the Victorian Plant Pathology Herbarium (VPRI) as VPRI 44369.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Australia
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries Maroochy Research Facility, Nambour, Australia
| | - Craig Webster
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Monica Kehoe
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Samantha Bond
- Biosecurity and Animal Welfare, Department of Industry, Tourism and Trade, Darwin, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Australia
| |
Collapse
|
9
|
Landicho DM, Montañez RJM, Camagna M, Neang S, Bulasag AS, Magdaraog PM, Sato I, Takemoto D, Maejima K, Pinili MS, Chiba S. Status of Cassava Witches' Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis. BIOLOGY 2024; 13:522. [PMID: 39056715 PMCID: PMC11273669 DOI: 10.3390/biology13070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Cassava witches' broom disease (CWBD) is one of the most devastating diseases of cassava (Manihot esculenta Crantz), and it threatens global production of the crop. In 2017, a phytoplasma, Candidatus Phytoplasma luffae (Ca. P. luffae), was reported in the Philippines, and it has been considered as the causal agent, despite unknown etiology and transmission of CWBD. In this study, the nationwide occurrence of CWBD was assessed, and detection of CWBD's pathogen was attempted using polymerase chain reaction (PCR) and next-generation sequencing (NGS) techniques. The results showed that CWBD has spread and become severe, exhibiting symptoms such as small leaf proliferation, shortened internodes, and vascular necrosis. PCR analysis revealed a low phytoplasma detection rate, possibly due to low titer, uneven distribution, or absence in the CWBD-symptomatic cassava. In addition, NGS techniques confirm the PCR results, revealing the absence or extremely low phytoplasma read counts, but a surprisingly high abundance of fastidious and xylem-limited fungus, Ceratobasidium sp. in CWBD-symptomatic plants. These findings cast doubt over the involvement of phytoplasma in CWBD and instead highlight the potential association of Ceratobasidium sp., strongly supporting the recent findings in mainland Southeast Asia. Further investigations are needed to verify the etiology of CWBD and identify infection mechanisms of Ceratobasidium sp. to develop effective diagnostic and control methods for disease management.
Collapse
Affiliation(s)
- Darwin Magsino Landicho
- Central Laboratory, National Plant Quarantine Services Division, Bureau of Plant Industry, Manila 1004, Philippines
- Nagoya University Asian Satellite Campuses Institute, Philippine Campus, University of the Philippines Los Baños, Laguna 4031, Philippines
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | | | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Sokty Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
- College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Peter Magan Magdaraog
- Crop Pest Management Division, Bureau of Plant Industry, Manila 1004, Philippines;
- Biology Department, College of Science, De La Salle University, Manila 0922, Philippines
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Marita Sanfuego Pinili
- National Crop Protection Center, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna 4031, Philippines;
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| |
Collapse
|
10
|
Montano HG, Bertaccini A, Fiore N. Phytoplasma-Associated Diseases in South America: Thirty Years of Research. Microorganisms 2024; 12:1311. [PMID: 39065080 PMCID: PMC11278980 DOI: 10.3390/microorganisms12071311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Phytoplasma-associated diseases are mainly insect-transmitted and are present worldwide. Considering that disease detection is a relevant environmental factor that may elucidate the presence of these diseases, a review reporting the geographic distribution of phytoplasma taxa in geographically consistent areas helps manage diseases appropriately and reduce their spreading. This work summarizes the data available about the identification of the phytoplasma associated with several diverse diseases in South America in the last decades. The insect vectors and putative vectors together with the plant host range of these phytoplasmas are also summarized. Overall, 16 'Candidatus Phytoplasma' species were detected, and those most frequently detected in agricultural-relevant crops such as corn, alfalfa, grapevine, and other horticultural species are 'Ca. P. pruni', 'Ca. P. asteris', and 'Ca. P. fraxini'.
Collapse
Affiliation(s)
- Helena Guglielmi Montano
- Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, Brazil;
| | - Assunta Bertaccini
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Nicola Fiore
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago 8820808, Chile;
| |
Collapse
|
11
|
Marcone C, Pierro R, Palmieri C. Occurrence, Impact, and Multilocus Sequence Analysis of Alder Yellows Phytoplasma Infecting Common Alder and Italian Alder in Southern Italy. Microorganisms 2024; 12:1140. [PMID: 38930522 PMCID: PMC11205446 DOI: 10.3390/microorganisms12061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Alder yellows (ALY) phytoplasma (16SrV-C) is associated with ALY, a disease of several Alnus (alder) species in Europe and A. rubra in North America. In all affected species, the symptoms are similar. However, latent infections are common. ALY phytoplasma includes different strains which may be occasionally transmitted to grapevines leading to some grapevine yellows diseases. In the current study, visual symptom assessment and PCR-based methods using universal and group-specific phytoplasma primers were used to update and extend knowledge on the occurrence, impact, and genetic diversity of ALY phytoplasma in declining and non-symptomatic A. glutinosa and A. cordata trees in the Basilicata and Campania regions of southern Italy. ALY phytoplasma was detected in 80% of alder trees examined. In symptomatic trees, no other cause of disease was observed. More than half of alder trees that tested phytoplasma-positive proved to be latently infected. A considerable genetic variability was observed among the newly recorded ALY phytoplasma strains in southern Italy in almost of the genes examined. These included 16S rRNA, 16S/23S rDNA spacer region, ribosomal protein rpsV (rpl22) and rpsC (rps3), map, imp, and groEL genes. Eleven new genotypes were identified at map gene sequence level. However, the genetic differences observed were not related to plant host species, geographical origin, and symptoms shown by infected alder trees. Also, this study indicates that ALY phytoplasma is more widespread than previously thought.
Collapse
Affiliation(s)
- Carmine Marcone
- Department of Pharmacy, University of Salerno, I-84084 Fisciano, Italy
| | | | | |
Collapse
|
12
|
Che H, Yu S, Chen W, Zheng W, Cao X, Luo D. Molecular Identification and Characterization of Novel Taxonomic Subgroups and New Host Plants in 16SrI and 16SrII Group Phytoplasmas and Their Evolutionary Diversity on Hainan Island, China. PLANT DISEASE 2024; 108:1703-1718. [PMID: 38175658 DOI: 10.1094/pdis-12-23-2682-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Phytoplasmas are a group of plant prokaryotic pathogens distributed worldwide. To comprehensively reveal the diversity of the pathogens and the diseases they cause on Hainan, a tropical island with abundant biodiversity in China, a survey of phytoplasmal diseases was performed from 2009 to 2022. Herein, molecular identification and genetic analysis were conducted based on the conserved genes of phytoplasmas. The results indicated that phytoplasmas could be detected in 138 samples from 18 host plants among 215 samples suspected to be infected by the pathogens. The phytoplasma strains from 27 diseased samples of 4 host plants belonged to the 16SrI group and the strains from 111 samples of 14 hosts belonged to the 16SrII group. Among them, 12 plants, including important tropical cash crops such as Phoenix dactylifera, cassava, sugarcane, and Piper nigrum, were first identified as hosts of phytoplasmas on Hainan Island. Based on BLAST and iPhyClassifier analyses, seven novel 16Sr subgroups were proposed to describe the relevant phytoplasma strains, comprising the 16SrI-AP, 16SrI-AQ, and 16SrI-AR subgroups within the 16SrI group and the 16SrII-Y, 16SrII-Z, 16SrII-AB, and 16SrII-AC subgroups within the 16SrII group. Genetic variation and phylogenetic analysis indicated that the phytoplasma strains identified in this study and those reported previously on Hainan Island mainly belong to four 16Sr groups (including I, II, V, and XXXII) and could infect 44 host plants, among which the 16SrI and 16SrII groups were the prevalent 16Sr groups associated with 43 host plant species. The diversity of host plants infected by the phytoplasmas made it difficult to monitor and control their related diseases. Therefore, strengthening inspection and quarantine during the introduction and transit of the related phytoplasmal host crops would effectively curb the spread and prevalence of the phytoplasmas and their related lethal diseases.
Collapse
Affiliation(s)
- Haiyan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Shaoshuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan Province, China
| | - Wang Chen
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Wenhu Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Xueren Cao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Daquan Luo
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| |
Collapse
|
13
|
Toth R, Ilic AM, Huettel B, Duduk B, Kube M. Divergence within the Taxon ' Candidatus Phytoplasma asteris' Confirmed by Comparative Genome Analysis of Carrot Strains. Microorganisms 2024; 12:1016. [PMID: 38792845 PMCID: PMC11123874 DOI: 10.3390/microorganisms12051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon 'Candidatus Phytoplasma asteris' were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of 'Ca. P. asteris' and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome.
Collapse
Affiliation(s)
- Rafael Toth
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| | - Anna-Marie Ilic
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| | | | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, 11080 Belgrade, Serbia;
| | - Michael Kube
- Department of Integrative Infection Biology Crops-Livestock, University of Hohenheim, 70599 Stuttgart, Germany; (R.T.); (A.-M.I.)
| |
Collapse
|
14
|
Akahori M, Miyazaki A, Koinuma H, Tokuda R, Iwabuchi N, Kitazawa Y, Maejima K, Namba S, Yamaji Y. Use of the 23S rRNA gene as a target template in the universal loop-mediated isothermal amplification (LAMP) of genomic DNA from phytoplasmas. Microbiol Spectr 2024; 12:e0010624. [PMID: 38534170 PMCID: PMC11064480 DOI: 10.1128/spectrum.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.
Collapse
Affiliation(s)
- Mako Akahori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akio Miyazaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Yu SS, Zhu AN, Che HY, Song WW. Molecular Identification of ' Candidatus Phytoplasma malaysianum'-Related Strains Associated with Areca catechu Palm Yellow Leaf Disease and Phylogenetic Diversity of the Phytoplasmas Within the 16SrXXXII Group. PLANT DISEASE 2024; 108:1331-1343. [PMID: 37953232 DOI: 10.1094/pdis-11-23-2275-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Areca catechu palm is an important cash plant in Hainan Island of China and also in the tropical regions of the world. A. catechu palm yellow leaf (AcYL) disease caused by phytoplasmas is a devastating disease for plant production. In the study, the phytoplasmas associated with the AcYL disease were identified and characterized based on their conserved genes, and genetic variation and phylogenetic relationship of the phytoplasma strains in the 16SrXXXII group were demonstrated. The results indicated that A. catechu palm plants showing yellow leaf symptoms were infected by 'Candidatus Phytoplasma malaysianum'-related strains belonging to the 16SrXXXII-D subgroup. BLAST and multiple sequence alignment analysis based on 16S rRNA and secA genes showed that the AcYL phytoplasmas shared 100% sequence identity and 100% homology with the 'Ca. P. malaysianum'-related strains. Phylogenetic analysis indicated that the AcYL phytoplasmas and 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group clustered into one clade with a 100% bootstrap value. Based on computer-simulated digestions, six kinds of restriction fragment length polymorphism patterns within the 16SrXXXII group were obtained, and a novel subgroup in the 16Sr group was recommended to propose and describe the relevant strains in this 16Sr subgroup. To our knowledge, this is the first study to report that A. catechu palm showing yellow leaf symptoms was infected by 'Ca. P. malaysianum'-related strains belonging to the 16SrXXXII group. A novel 16Sr subgroup, 16SrXXXII-F, was proposed based on the systematical analysis of genetic variation of all phytoplasmas within the 16SrXXXII group. The findings of this study will support references for monitoring the epidemiology and developing effective prevention strategies for AcYL disease.
Collapse
Affiliation(s)
- Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| | - An-Na Zhu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
- College of Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Hai-Yan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Wei-Wei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan, China
| |
Collapse
|
16
|
Esmaeilzadeh-Hosseini SA, Babaei G, Pacini F, Bertaccini A. Multilocus Gene Analyses Indicate Tamarix aphylla as Reservoir Host of Diverse Phytoplasmas Associated with Witches' Broom and Yellowing Symptomatology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1248. [PMID: 38732463 PMCID: PMC11085372 DOI: 10.3390/plants13091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Tamarisk witches' broom, yellowing, and little leaf symptoms were observed during 2018-2023 surveys of rural deserts in central regions of Iran with the highest disease incidence up to 72% in Chah Afzal (Yazd province). A verification of the presence and identity of phytoplasmas associated with these symptoms was then performed. Tamarisk tree branch cuttings obtained from symptomatic plants sprouted up to 90.3% but with 15-25 days' delay compared to the asymptomatic ones and showed internode shortening and witches' broom, while the branch cuttings from asymptomatic plants had normal growth and sprouted up to 97.8%. Phytoplasma transmission by dodder bridges to periwinkle did not succeed, while nested polymerase chain reaction on the phytoplasma ribosomal gene followed by RFLP and phylogenetic analyses revealed the presence of 'Candidatus Phytoplasma asteris', 'Ca. P. australasiae=australasiaticum', and 'Ca. P. trifolii' (ribosomal subgroups 16SrI-B, 16SrII-D, and 16SrVI-A, respectively) in the samples from symptomatic plants only. Further amplifications were performed on selected phytoplasma-positive samples on tuf and secA genes, and the produced sequences indicated the presence of mixed phytoplasma infection in some of the samples. In particular, in the tuf gene, a mixed infection of 'Ca. P. australasiae=australasiaticum' and 'Ca. P. trifolii' was detected, while in the secA gene, the presence of 'Ca. P. asteris' or 'Ca. P. tritici' strains was identified. The first-time detection of diverse phytoplasma strains in symptomatic T. aphylla suggests that this species represent a relevant source of infection for the agricultural crops and for landscape plants especially when temperature allows insect vector transmission, and therefore, it represents a risk in every environment especially in the frame of climatic changes.
Collapse
Affiliation(s)
- Seyyed Alireza Esmaeilzadeh-Hosseini
- Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
| | - Ghobad Babaei
- Plant Protection Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran;
| | - Francesco Pacini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 20127 Bologna, Italy;
| | - Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 20127 Bologna, Italy;
| |
Collapse
|
17
|
Zhang Y, Qiao Z, Li J, Bertaccini A. Paulownia Witches' Broom Disease: A Comprehensive Review. Microorganisms 2024; 12:885. [PMID: 38792713 PMCID: PMC11123829 DOI: 10.3390/microorganisms12050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Phytoplasmas are insect-transmitted bacterial pathogens associated with diseases in a wide range of host plants, resulting in significant economic and ecological losses. Perennial deciduous trees in the genus Paulownia are widely planted for wood harvesting and ornamental purposes. Paulownia witches' broom (PaWB) disease, associated with a 16SrI-D subgroup phytoplasma, is a destructive disease of paulownia in East Asia. The PaWB phytoplasmas are mainly transmitted by insect vectors in the Pentatomidae (stink bugs), Miridae (mirid bugs) and Cicadellidae (leafhoppers) families. Diseased trees show typical symptoms, such as branch and shoot proliferation, which together are referred to as witches' broom. The phytoplasma presence affects the physiological and anatomical structures of paulownia. Gene expression in paulownia responding to phytoplasma presence have been studied at the transcriptional, post-transcriptional, translational and post-translational levels by high throughput sequencing techniques. A PaWB pathogenic mechanism frame diagram on molecular level is summarized. Studies on the interactions among the phytoplasma, the insect vectors and the plant host, including the mechanisms underlying how paulownia effectors modify processes of gene expression, will lead to a deeper understanding of the pathogenic mechanisms and to the development of efficient control measures.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
- Henan Provincial Institute of Scientific and Technical Information, Zhengzhou 450003, China
| | - Zesen Qiao
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
| | - Jidong Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450000, China; (Y.Z.); (Z.Q.)
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Assunta Bertaccini
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
18
|
Rodrigues Jardim B, Gambley C, Tran-Nguyen LTT, Webster C, Kehoe M, Kinoti WM, Bond S, Davis R, Jones L, Pathania N, Sharman M, Chapman T, Rodoni BC, Constable FE. A metagenomic investigation of phytoplasma diversity in Australian vegetable growing regions. Microb Genom 2024; 10:001213. [PMID: 38446015 PMCID: PMC10999746 DOI: 10.1099/mgen.0.001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, metagenomic sequence data was used to investigate the phytoplasma taxonomic diversity in vegetable-growing regions across Australia. Metagenomic sequencing was performed on 195 phytoplasma-positive samples, originating either from historic collections (n=46) or during collection efforts between January 2015 and June 2022 (n=149). The sampled hosts were classified as crop (n=155), weed (n=24), ornamental (n=7), native plant (n=6), and insect (n=3) species. Most samples came from Queensland (n=78), followed by Western Australia (n=46), the Northern Territory (n=32), New South Wales (n=17), and Victoria (n=10). Of the 195 draft phytoplasma genomes, 178 met our genome criteria for comparison using an average nucleotide identity approach. Ten distinct phytoplasma species were identified and could be classified within the 16SrII, 16SrXII (PCR only), 16SrXXV, and 16SrXXXVIII phytoplasma groups, which have all previously been recorded in Australia. The most commonly detected phytoplasma taxa in this study were species and subspecies classified within the 16SrII group (n=153), followed by strains within the 16SrXXXVIII group ('Ca. Phytoplasma stylosanthis'; n=6). Several geographic- and host-range expansions were reported, as well as mixed phytoplasma infections of 16SrII taxa and 'Ca. Phytoplasma stylosanthis'. Additionally, six previously unrecorded 16SrII taxa were identified, including five putative subspecies of 'Ca. Phytoplasma australasiaticum' and a new putative 16SrII species. PCR and sequencing of the 16S rRNA gene was a suitable triage tool for preliminary phytoplasma detection. Metagenomic sequencing, however, allowed for higher-resolution identification of the phytoplasmas, including mixed infections, than was afforded by only direct Sanger sequencing of the 16S rRNA gene. Since the metagenomic approach theoretically obtains sequences of all organisms in a sample, this approach was useful to confirm the host family, genus, and/or species. In addition to improving our understanding of the phytoplasma species that affect crop production in Australia, the study also significantly expands the genomic sequence data available in public sequence repositories to contribute to phytoplasma molecular epidemiology studies, revision of taxonomy, and improved diagnostics.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries Maroochy Research Facility, Nambour, Queensland, Australia
| | | | - Craig Webster
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Monica Kehoe
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Samantha Bond
- Biosecurity and Animal Welfare, Department of Industry, Tourism and Trade, Darwin, Northern Territory, Australia
| | - Richard Davis
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory, 2601, Australia
| | - Lynne Jones
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory, 2601, Australia
| | - Nandita Pathania
- Department of Agriculture and Fisheries, Mareeba, Queensland, Australia
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
| | - Toni Chapman
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, New South Wales, 2567, Australia
| | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| |
Collapse
|
19
|
Kiss T, Šafářová D, Navrátil M, Nečas T. Molecular Characterization of ' Candidatus Phytoplasma prunorum' in the Czech Republic and Susceptibility of Apricot Rootstocks to the Two Most Abundant Haplotypes. Microorganisms 2024; 12:399. [PMID: 38399803 PMCID: PMC10893538 DOI: 10.3390/microorganisms12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
'Candidatus Phytoplasma prunorum' is one of the most destructive pathogens of Prunus species, where susceptible species render unproductive several years after infection. In epidemiology, the molecular characterization of phytoplasmas is based on sequence analysis of variable nonribosomal genes. In this study aceF, pnp, imp and secY genes were used for characterization of the 'Ca. P. prunorum' genotypes present in the Czech Republic. In total, 56 plant and 33 vector (Cacopsylla pruni) samples positive to 'Ca. P. prunorum' collected in seven localities were used in the study. Based on sequence analysis, four aceF, two pnp, six imp, and three secY genotypes were identified in analyzed samples. The most abundant in both plant and insect samples were the A6, P2, I4, and S2 genotypes. Most of the Czech 'Ca. P. prunorum' haplotypes clustered together in the haplotype network analysis. Next, two isolates representing the two most abundant Czech haplotypes (A6-P2-I4-S2 and A5-P2-I4-S2) were used in the susceptibility test of three apricot rootstock types (St. Julien A, M-VA-1, GF-305). Susceptibility was analyzed by phytoplasma quantification using quantitative real-time PCR and evaluation of symptom manifestation. Based on the results, the influence of the rootstock type on the phytoplasma titer and symptom manifestation was greater than of the phytoplasma isolate, while the year of analysis had no influence on the results. The results also showed that the phytoplasma titer is increasing in plant tissues during the vegetation period.
Collapse
Affiliation(s)
- Tomáš Kiss
- Department of Fruit Science, Faculty of Horticulture, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic; (D.Š.); (M.N.)
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic; (D.Š.); (M.N.)
| | - Tomáš Nečas
- Department of Fruit Science, Faculty of Horticulture, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| |
Collapse
|
20
|
Li NP, Yan XH, Pei SC, Hung TH, Chang TC, Bai QZ, Tai CF, Kuo CH. Complete genome sequence of Candidatus Phytoplasma australasiaticum WF_GM2021, a plant pathogen associated with soybean witches' broom disease in Taiwan. Microbiol Resour Announc 2024; 13:e0099323. [PMID: 38206024 PMCID: PMC10868231 DOI: 10.1128/mra.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The complete genome sequence of Candidatus Phytoplasma australasiaticum strain WF_GM2021, which consists of one 633,005-bp circular chromosome, is presented in this work. This uncultivated plant-pathogenic bacterium is associated with soybean (Glycine max) witches' broom disease in Wufeng District, Taichung City, Taiwan.
Collapse
Affiliation(s)
- Nian-Pu Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Xiao-Hua Yan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shen-Chian Pei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ting-Hsuan Hung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tsu-Cheng Chang
- Agricultural Chemicals Research Institute, Ministry of Agriculture, Taichung, Taiwan
| | - Qiong-Zhuan Bai
- Agricultural Chemicals Research Institute, Ministry of Agriculture, Taichung, Taiwan
| | - Chao-Feng Tai
- Agricultural Chemicals Research Institute, Ministry of Agriculture, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
21
|
Wang R, Bai B, Li D, Wang J, Huang W, Wu Y, Zhao L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. MOLECULAR PLANT PATHOLOGY 2024; 25:e13437. [PMID: 38393681 PMCID: PMC10887288 DOI: 10.1111/mpp.13437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Phytoplasmas are phloem-restricted plant-pathogenic bacteria transmitted by insects. They cause diseases in a wide range of host plants, resulting in significant economic and ecological losses worldwide. Research on phytoplasmas has a long history, with significant progress being made in the past 30 years. Notably, with the rapid development of phytoplasma research, scientists have identified the primary agents involved in phytoplasma transmission, established classification and detection systems for phytoplasmas, and 243 genomes have been sequenced and assembled completely or to draft quality. Multiple possible phytoplasma effectors have been investigated, elucidating the molecular mechanisms by which phytoplasmas manipulate their hosts. This review summarizes recent advances in phytoplasma research, including identification techniques, host range studies, whole- or draft-genome sequencing, effector pathogenesis and disease control methods. Additionally, future research directions in the field of phytoplasma research are discussed.
Collapse
Affiliation(s)
- Ruotong Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bixin Bai
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Danyang Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
22
|
Duduk B, Ćurčić Ž, Stepanović J, Böhm JW, Kosovac A, Rekanović E, Kube M. Prevalence of a ' Candidatus Phytoplasma solani'-Related Strain Designated as New 16SrXII-P Subgroup over ' Candidatus Arsenophonus phytopathogenicus' in Sugar Beet in Eastern Germany. PLANT DISEASE 2023; 107:3792-3800. [PMID: 37189042 DOI: 10.1094/pdis-04-23-0613-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two phloem-limited pathogens, 'Candidatus Arsenophonus phytopathogenicus' and 'Candidatus Phytoplasma solani', threaten sugar beet production in France, Switzerland, and Germany. Previous studies of these pathogens in Germany had focused on its western and southern regions, leaving a knowledge gap about eastern Germany. Despite their importance, this study is the first to investigate phytoplasmas in sugar beet in Saxony-Anhalt, Germany. A phytoplasma strain related to 'Ca. P. solani' is found predominant in Saxony-Anhalt, unlike in France, where 'Ca. P. solani' has a minor role compared with 'Ca. A. phytopathogenicus'. The phytoplasma strain infecting sugar beet in Saxony-Anhalt was classified into a new subgroup designated as 16SrXII-P. The multilocus sequence analysis (MLSA) of nonribosomal genes of the novel phytoplasma strain showed that it is significantly different from the reference and all previously reported 'Ca. P. solani' strains including the strain from western Germany. Analyses of sugar beet samples from previous years confirmed the presence of the 16SrXII-P strain in sugar beet as early as 2020 and also in Bavaria in southern Germany. Based on 16S rDNA analysis, 'Ca. A. phytopathogenicus' in Saxony-Anhalt is identical to strains in sugar beet in other parts of Germany and France, as well as to a strain in potato from Germany. The presence and prevalence of two phytoplasmas in sugar beet in Germany suggest that more attention should be directed toward understanding phytoplasma infection in sugar beet in this country.
Collapse
Affiliation(s)
- Bojan Duduk
- Institute of Pesticides and Environmental Protection, Belgrade 11080, Serbia
| | - Živko Ćurčić
- Institute of Field and Vegetable Crops, Novi Sad 21000, Serbia
| | - Jelena Stepanović
- Institute of Pesticides and Environmental Protection, Belgrade 11080, Serbia
| | | | - Andrea Kosovac
- Institute of Pesticides and Environmental Protection, Belgrade 11080, Serbia
| | - Emil Rekanović
- Institute of Pesticides and Environmental Protection, Belgrade 11080, Serbia
| | - Michael Kube
- University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
23
|
Corretto E, Trenti M, Štarhová Serbina L, Howie JM, Dittmer J, Kerschbamer C, Candian V, Tedeschi R, Janik K, Schuler H. Multiple factors driving the acquisition efficiency of apple proliferation phytoplasma in Cacopsylla melanoneura. JOURNAL OF PEST SCIENCE 2023; 97:1299-1314. [PMID: 39188925 PMCID: PMC11344730 DOI: 10.1007/s10340-023-01699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 08/28/2024]
Abstract
Phytoplasmas are bacterial pathogens located in the plant's phloem that are responsible for several plant diseases and are mainly transmitted by phloem-sucking insects. Apple proliferation (AP) is an economically important disease associated with the presence of 'Candidatus Phytoplasma mali' which is transmitted by two psyllid species. While Cacopsylla picta is a vector in different regions, the vector efficiency of C. melanoneura varies between different populations. This species is considered the main AP vector in Northwestern Italy but plays a minor role in Northeastern Italy and other European regions. To investigate whether the psyllid and/or the phytoplasma subtype drive the phytoplasma acquisition in C. melanoneura, a phytoplasma acquisition experiment was set up using single mating couples of overwintered individuals from different psyllid populations and phytoplasma subtypes. All analyzed insect populations acquired phytoplasma, but with different efficiencies and concentrations. The main factors driving the acquisition were the phytoplasma subtype and its concentration in the leaves of the infected trees together with the psyllid lineage. The phytoplasma concentration in the psyllids was again influenced by the phytoplasma subtype, the psyllid lineage and the region of origin, whereas the phytoplasma concentration in the leaves and the psyllid haplotype defined with the cytochrome oxidase I gene had only a minor impact on the phytoplasma concentration. This is the first study evaluating the roles of both the psyllid haplotype and the phytoplasma subtype on the acquisition process and highlights the importance of C. melanoneura as an additional AP vector. Supplementary Information The online version contains supplementary material available at 10.1007/s10340-023-01699-1.
Collapse
Affiliation(s)
- Erika Corretto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | | | - Liliya Štarhová Serbina
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - James Malcolm Howie
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Jessica Dittmer
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d’Angers, Angers, France
| | | | - Valentina Candian
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Rosemarie Tedeschi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | | | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| |
Collapse
|
24
|
Bertaccini A. Phloem-Localized Insect-Transmitted Bacteria Associated with Plant Diseases. Microorganisms 2023; 11:2494. [PMID: 37894152 PMCID: PMC10609563 DOI: 10.3390/microorganisms11102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In the last three decades, an increasing number of plant diseases associated with the presence of phloem-localized insect-transmitted bacteria have been observed around the world, causing serious economic losses [...].
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
25
|
Zhang RY, Wang XY, Li J, Shan HL, Li YH, Huang YK, He XH. Complete genome sequence of " Candidatus Phytoplasma sacchari" obtained using a filter-based DNA enrichment method and Nanopore sequencing. Front Microbiol 2023; 14:1252709. [PMID: 37849920 PMCID: PMC10577292 DOI: 10.3389/fmicb.2023.1252709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enrichment via Illumina sequencing technologies, and utilized Illumina and Nanopore sequencing technologies to obtain the complete genome sequence of the "Candidatus Phytoplasma sacchari" isolate SCWL1 that is associated with sugarcane white leaf in China. Illumina sequencing analysis elucidated that only 1.21% of the sequencing reads from total leaf DNA were mapped to the SCWL1 genome, whereas 40.97% of the sequencing reads from the enriched DNA were mapped to the SCWL1 genome. The genome of isolate SCWL1 consists of a 538,951 bp and 2976 bp long circular chromosome and plasmid, respectively. We identified 459 protein-encoding genes, 2 complete 5S-23S-16S rRNA gene operons, 27 tRNA genes, and an incomplete potential mobile unit (PMU) in the circular chromosome. Phylogenetic analyses and average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values based on the sequenced genome revealed that SCWL phytoplasma and sugarcane grassy shoot (SCGS) phytoplasma belonged to the same phytoplasma species. This study provides a genomic DNA enrichment method for phytoplasma sequencing. Moreover, we report the first complete genome of a "Ca. Phytoplasma sacchari" isolate, thus contributing to future studies on the evolutionary relationships and pathogenic mechanisms of "Ca. Phytoplasma sacchari" isolates.
Collapse
Affiliation(s)
- Rong-Yue Zhang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yan Wang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Jie Li
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Hong-Li Shan
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Yin-Hu Li
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Ying-Kun Huang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- School of Landscape and Horticulture, Southwest Forestry University, Kunming, China
| |
Collapse
|
26
|
Wang J, Zhao Z, Niu Q, Zhu T, Gao R, Sun Y. Draft Genome Sequence Resource of Sweet Cherry Virescence Phytoplasma Strain SCV-TA2020 Associated with Sweet Cherry Virescence Disease in China. PLANT DISEASE 2023; 107:3269-3272. [PMID: 36947840 DOI: 10.1094/pdis-01-23-0042-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sweet cherry virescence phytoplasma strain SCV-TA2020, a related strain of 'Candidatus Phytoplasma ziziphi', is a pathogen associated with sweet cherry virescence disease in China. Here, we provide the first-draft genome sequence of SCV-TA2020, which consists of 775,344 bases, with a GC content of 23.21%. This will provide a reference for understanding the host selection and diversity of host-specific symptoms of 16SrV-B subgroup phytoplasmas.
Collapse
Affiliation(s)
- Jie Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Zhihui Zhao
- College of Plant Science, Tarim University/Key Laboratories for Integrated Control Corps of Agricultural Pests Management Corps in Southern Xinjiang/National and Local Joint Engineering Laboratories with High-Efficiency and High-Quality Cultivation and Deep Processing Technology for Characteristic Fruit Trees in Southern Xinjiang, Xinjiang Alar 843300, China
| | - Qinglin Niu
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Tiansheng Zhu
- College of Plant Science, Tarim University/Key Laboratories for Integrated Control Corps of Agricultural Pests Management Corps in Southern Xinjiang/National and Local Joint Engineering Laboratories with High-Efficiency and High-Quality Cultivation and Deep Processing Technology for Characteristic Fruit Trees in Southern Xinjiang, Xinjiang Alar 843300, China
| | - Rui Gao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Yugang Sun
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| |
Collapse
|
27
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Al-Sadi AM, Al-Subhi AM, Foissac X, Salar P, Cai H, Yang JY, Davis R, Jones L, Rodoni B, Constable FE. The observation of taxonomic boundaries for the 16SrII and 16SrXXV phytoplasmas using genome-based delimitation. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486824 DOI: 10.1099/ijsem.0.005977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Within the 16SrII phytoplasma group, subgroups A-X have been classified based on restriction fragment length polymorphism of their 16S rRNA gene, and two species have been described, namely 'Candidatus Phytoplasma aurantifolia' and 'Ca. Phytoplasma australasia'. Strains of 16SrII phytoplasmas are detected across a broad geographic range within Africa, Asia, Australia, Europe and North and South America. Historically, all members of the 16SrII group share ≥97.5 % nucleotide sequence identity of their 16S rRNA gene. In this study, we used whole genome sequences to identify the species boundaries within the 16SrII group. Whole genome analyses were done using 42 phytoplasma strains classified into seven 16SrII subgroups, five 16SrII taxa without official 16Sr subgroup classifications, and one 16SrXXV-A phytoplasma strain used as an outgroup taxon. Based on phylogenomic analyses as well as whole genome average nucleotide and average amino acid identity (ANI and AAI), eight distinct 16SrII taxa equivalent to species were identified, six of which are novel descriptions. Strains within the same species had ANI and AAI values of >97 %, and shared ≥80 % of their genomic segments based on the ANI analysis. Species also had distinct biological and/or ecological features. A 16SrII subgroup often represented a distinct species, e.g., the 16SrII-B subgroup members. Members classified within the 16SrII-A, 16SrII-D, and 16SrII-V subgroups as well as strains classified as sweet potato little leaf phytoplasmas fulfilled criteria to be included as members of a single species, but with subspecies-level relationships with each other. The 16SrXXV-A taxon was also described as a novel phytoplasma species and, based on criteria used for other bacterial families, provided evidence that it could be classified as a distinct genus from the 16SrII phytoplasmas. As more phytoplasma genome sequences become available, the classification system of these bacteria can be further refined at the genus, species, and subspecies taxonomic ranks.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries Maroochy Research Facility, Nambour, Queensland, Australia
| | - Abdullah M Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ali M Al-Subhi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Xavier Foissac
- University of Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Bordeaux, Villenave d'Ornon, France
| | - Pascal Salar
- University of Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Bordeaux, Villenave d'Ornon, France
| | - Hong Cai
- The Key Laboratory for Plant Pathology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Richard Davis
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory 2601, Australia
| | - Lynne Jones
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory 2601, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Fiona E Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| |
Collapse
|
28
|
Rossi M, Galetto L, Bodino N, Beltramo J, Gamalero S, Pegoraro M, Bosco D, Marzachì C. Competition among Flavescence Dorée Phytoplasma Strains in the Experimental Insect Vector Euscelidius variegatus. INSECTS 2023; 14:575. [PMID: 37504582 PMCID: PMC10380400 DOI: 10.3390/insects14070575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Phytoplasmas are plant pathogenic wall-less bacteria transmitted in a persistent propagative manner by hemipteran insects, mainly belonging to the suborder Auchenorrhyncha (Fulgoromorpha and Cicadomorpha). Flavescence dorée (FD) is a quarantine disease of grapevine, causing great damage to European viticulture and associated with phytoplasmas belonging to 16SrV-C (FD-C) and -D (FD-D) subgroups. FD-C and FD-D strains share similar pathogenicity, but mixed infections are rare in nature. To investigate the competition among FDp strains, specimens of the laboratory vector Euscelidius variegatus (Hemiptera: Cicadellidae) were forced to acquire both phytoplasma haplotypes upon feeding on FD-C- and FD-D-infected plants or after the injection of both strains. The pathogen colonization of insect bodies and heads was monitored with multiplex qPCR, and the efficiencies of phytoplasma transmission were estimated. Single infection, irrespective of strain type, was more frequent than expected, indicating that competition among FD strains occurs. Hypotheses of competition for resources and/or host active sites or the direct antibiosis of one strain against the other are discussed, based on the genetic complexity of FDp populations and on the high genome variability of the FD-D strain. As FD management still mainly relies on insecticides against vectors, the characterization of FDp haplotypes and the description of their epidemiology also have practical implications.
Collapse
Affiliation(s)
- Marika Rossi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luciana Galetto
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Nicola Bodino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Jessica Beltramo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Silvia Gamalero
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mattia Pegoraro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Metrologia dei Materiali Innovativi e Scienze della Vita, Istituto Nazionale di Ricerca Metrologica, INRiM, Strada delle Cacce 91, 10135 Torino, Italy
| | - Domenico Bosco
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, IPSP-CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
29
|
Xue C, Zhang Y, Li H, Liu Z, Gao W, Liu M, Wang H, Liu P, Zhao J. The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics. BMC PLANT BIOLOGY 2023; 23:251. [PMID: 37173622 PMCID: PMC10176825 DOI: 10.1186/s12870-023-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China.
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
30
|
Kirdat K, Tiwarekar B, Sathe S, Yadav A. From sequences to species: Charting the phytoplasma classification and taxonomy in the era of taxogenomics. Front Microbiol 2023; 14:1123783. [PMID: 36970684 PMCID: PMC10033645 DOI: 10.3389/fmicb.2023.1123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Phytoplasma taxonomy has been a topic of discussion for the last two and half decades. Since the Japanese scientists discovered the phytoplasma bodies in 1967, the phytoplasma taxonomy was limited to disease symptomology for a long time. The advances in DNA-based markers and sequencing improved phytoplasma classification. In 2004, the International Research Programme on Comparative Mycoplasmology (IRPCM)- Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group provided the description of the provisional genus ‘Candidatus Phytoplasma’ with guidelines to describe the new provisional phytoplasma species. The unintentional consequences of these guidelines led to the description of many phytoplasma species where species characterization was restricted to a partial sequence of the 16S rRNA gene alone. Additionally, the lack of a complete set of housekeeping gene sequences or genome sequences, as well as the heterogeneity among closely related phytoplasmas limited the development of a comprehensive Multi-Locus Sequence Typing (MLST) system. To address these issues, researchers tried deducing the definition of phytoplasma species using phytoplasmas genome sequences and the average nucleotide identity (ANI). In another attempts, a new phytoplasma species were described based on the Overall Genome relatedness Values (OGRI) values fetched from the genome sequences. These studies align with the attempts to standardize the classification and nomenclature of ‘Candidatus’ bacteria. With a brief historical account of phytoplasma taxonomy and recent developments, this review highlights the current issues and provides recommendations for a comprehensive system for phytoplasma taxonomy until phytoplasma retains ‘Candidatus’ status.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Bhavesh Tiwarekar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, India
| | - Amit Yadav
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University, Pune, India
- *Correspondence: Amit Yadav, ,
| |
Collapse
|
31
|
Arricau-Bouvery N, Dubrana MP, Canuto F, Duret S, Brocard L, Claverol S, Malembic-Maher S, Foissac X. Flavescence dorée phytoplasma enters insect cells by a clathrin-mediated endocytosis allowing infection of its insect vector. Sci Rep 2023; 13:2211. [PMID: 36750707 PMCID: PMC9905606 DOI: 10.1038/s41598-023-29341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.
Collapse
Affiliation(s)
- Nathalie Arricau-Bouvery
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France.
| | - Marie-Pierre Dubrana
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Francesca Canuto
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Sybille Duret
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33140, Villenave d'Ornon, France
| | | | - Sylvie Malembic-Maher
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Xavier Foissac
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| |
Collapse
|
32
|
Yu SS, Pan YW, Zhu H, Song WW. Universal, Rapid, and Visual Detection Methods for Phytoplasmas Associated with Coconut Lethal Yellowing Diseases Targeting 16S rRNA Gene Sequences. PLANT DISEASE 2023; 107:276-280. [PMID: 35852909 DOI: 10.1094/pdis-05-22-0996-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coconut lethal yellowing (LY) diseases caused by phytoplasmas are devastating diseases for coconut cultivation and seriously threaten the coconut industry around world. The phytoplasmas associated with the LY diseases belonged to six 16Sr groups containing 16SrI, 16SrIV, 16SrXI, 16SrXIV, 16SrXXII, and 16SrXXXII with comparatively higher variable levels. Conserved regions of the 16S rRNA genes of LY phytoplasmas belonging to the six 16Sr groups were obtained in the study. Based on the conserved region sequences of 16S rRNA genes, two sets of LAMP primers, Co-4 and Co-6, were designed and screened, and the rapid and visual detection methods universal for different groups LY phytoplasmas were established. The entire detection reactions of the universal detection methods could be completed with only 30 to 40 min of constant temperature amplification at 64°C, and the detection results were judged by the color changes of the reaction systems, which are convenient and quick. For the six groups of phytoplasmas, the estimated minimum detection limit range of the universal detection primers Co-4 and Co-6 were identical: 4.8 × 101 to 4.8 × 107 copies per 200 μl. The universal detection methods for the LY phytoplasmas established in the study are of great significance for the rapid diagnosis and identification and the efficient monitoring and early warning as well as the port inspection and quarantine of the LY phytoplasmas and their related diseases.
Collapse
Affiliation(s)
- Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan Province, China
| | - Ying-Wen Pan
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs, Haikou 570311, Hainan Province, China
| | - Hui Zhu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan Province, China
| | - Wei-Wei Song
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan Province, China
| |
Collapse
|
33
|
Prazaru SC, D’Ambrogio L, Dal Cero M, Rasera M, Cenedese G, Guerrieri E, Pavasini M, Mori N, Pavan F, Duso C. Efficacy of Conventional and Organic Insecticides against Scaphoideus titanus: Field and Semi-Field Trials. INSECTS 2023; 14:101. [PMID: 36835670 PMCID: PMC9967193 DOI: 10.3390/insects14020101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Scaphoideus titanus is the main vector of phytoplasmas associated with Flavescence dorée (FD), one of the most serious threats to viticulture in many European countries. To minimize the spread of this disease, mandatory control measures against S. titanus were decided in Europe. In the 1990s, the repeated application of insecticides (mainly organophosphates) proved to be an effective measure to control the vector and the related disease in north-eastern Italy. These insecticides and most of the neonicotinoids were recently banned from European viticulture. Serious FD issues detected in the recent years in northern Italy could be related to the use of less effective insecticides. Trials aimed at evaluating the efficacy of the most used conventional and organic insecticides in the control of S. titanus have been performed in semi-field and field conditions to test this hypothesis. In efficacy trials, carried out in four vineyards, etofenprox and deltamethrin proved to be the best conventional insecticides, while pyrethrins were the most impactful among organic insecticides. Insecticide residual activity was evaluated in semi-field and field conditions. Acrinathrin showed the most significant residual effects in both conditions. In semi-field trials, most of the pyrethroids were associated with good results in terms of residual activity. However, these effects declined in field conditions, probably due to high temperatures. Organic insecticides showed poor results in terms of residual efficacy. Implications of these results in the context of Integrated Pest Management in conventional and organic viticulture are discussed.
Collapse
Affiliation(s)
- Stefan Cristian Prazaru
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Lisa D’Ambrogio
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Martina Dal Cero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Mirko Rasera
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Giovanni Cenedese
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Enea Guerrieri
- Department of Biotechnology, Verona University, 37134 Verona, Italy
| | - Marika Pavasini
- Department of Biotechnology, Verona University, 37134 Verona, Italy
| | - Nicola Mori
- Department of Biotechnology, Verona University, 37134 Verona, Italy
| | - Francesco Pavan
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| |
Collapse
|
34
|
Pusz-Bochenska K, Perez-Lopez E, Wist TJ, Bennypaul H, Sanderson D, Green M, Dumonceaux TJ. Multilocus sequence typing of diverse phytoplasmas using hybridization probe-based sequence capture provides high resolution strain differentiation. Front Microbiol 2022; 13:959562. [PMID: 36246242 PMCID: PMC9556853 DOI: 10.3389/fmicb.2022.959562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
Phytoplasmas are insect-vectored, difficult-to-culture bacterial pathogens that infect a wide variety of crop and non-crop plants, and are associated with diseases that can lead to significant yield losses in agricultural production worldwide. Phytoplasmas are currently grouped in the provisional genus ‘Candidatus Phytoplasma’, which includes 49 ‘Candidatus’ species. Further differentiation of phytoplasmas into ribosomal groups is based on the restriction fragment length polymorphism (RFLP) pattern of the 16S rRNA-encoding operon, with more than 36 ribosomal groups (16Sr) and over 100 subgroups reported. Since disease symptoms on plants are not associated with phytoplasma identity, accurate diagnostics is of critical importance to manage disease associated with these microorganisms. Phytoplasmas are typically detected from plant and insect tissue using PCR-based methods targeting universal taxonomic markers. Although these methods are relatively sensitive, specific and are widely used, they have limitations, since they provide limited resolution of phytoplasma strains, thus necessitating further assessment of biological properties and delaying implementation of mitigation measures. Moreover, the design of PCR primers that can target multiple loci from phytoplasmas that differ at the sequence level can be a significant challenge. To overcome these limitations, a PCR-independent, multilocus sequence typing (MLST) assay to characterize an array of phytoplasmas was developed. Hybridization probe s targeting cpn60, tuf, secA, secY, and nusA genes, as well as 16S and rp operons, were designed and used to enrich DNA extracts from phytoplasma-infected samples for DNA fragments corresponding to these markers prior to Illumina sequencing. This method was tested using different phytoplasmas including ‘Ca. P. asteris’ (16SrI-B), ‘Ca. P. pruni’ (16SrIII-A),‘Ca. P. prunorum’ (16SrX-B), ‘Ca. P. pyri’ (16SrX-C), ‘Ca. P. mali’ (16SrX-A), and ‘Ca. P. solani’ (16SrXII-A). Thousands of reads were obtained for each gene with multiple overlapping fragments, which were assembled to generate full-length (typically >2 kb), high-quality sequences. Phytoplasma groups and subgroups were accurately determined based on 16S ribosomal RNA and cpn60 gene sequences. Hybridization-based MLST facilitates the enrichment of target genes of phytoplasmas and allows the simultaneous determination of sequences corresponding to seven different markers. In this proof-of-concept study, hybridization-based MLST was demonstrated to be an efficient way to generate data regarding ‘Ca. Phytoplasma’ species/strain differentiation.
Collapse
Affiliation(s)
- Karolina Pusz-Bochenska
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edel Perez-Lopez
- Centre de Recherche et D'innovation sur les Végétaux (CRIV), Faculté des Sciences de L'agriculture et de L'alimentation, Département de Phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Tyler J. Wist
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Harvinder Bennypaul
- Canadian Food Inspection Agency (CFIA), Sidney Laboratory, Centre for Plant Health, North Saanich, BC, Canada
| | - Daniel Sanderson
- Canadian Food Inspection Agency (CFIA), Sidney Laboratory, Centre for Plant Health, North Saanich, BC, Canada
| | - Margaret Green
- Canadian Food Inspection Agency (CFIA), Sidney Laboratory, Centre for Plant Health, North Saanich, BC, Canada
| | - Tim J. Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Tim J. Dumonceaux,
| |
Collapse
|
35
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Rodoni B, Constable FE. Iodixanol density gradients as an effective phytoplasma enrichment approach to improve genome sequencing. Front Microbiol 2022; 13:937648. [PMID: 36033837 PMCID: PMC9411968 DOI: 10.3389/fmicb.2022.937648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Obtaining complete phytoplasma genomes is difficult due to the lack of a culture system for these bacteria. To improve genome assembly, a non-ionic, low- and iso-osmotic iodixanol (Optiprep™) density gradient centrifugation method was developed to enrich for phytoplasma cells and deplete plant host tissues prior to deoxyribonucleic acid (DNA) extraction and high-throughput sequencing (HTS). After density gradient enrichment, potato infected with a ‘Candidatus Phytoplasma australasia’-related strain showed a ∼14-fold increase in phytoplasma HTS reads, with a ∼1.7-fold decrease in host genomic reads compared to the DNA extracted from the same sample without density gradient centrifugation enrichment. Additionally, phytoplasma genome assemblies from libraries equalized to 5 million reads were, on average, ∼15,000 bp larger and more contiguous (N50 ∼14,800 bp larger) than assemblies from the DNA extracted from the infected potato without enrichment. The method was repeated on capsicum infected with Sweet Potato Little Leaf phytoplasma (‘Ca. Phytoplasma australasia’-related strain) with a lower phytoplasma titer than the potato. In capsicum, ∼threefold more phytoplasma reads and ∼twofold less host genomic reads were obtained, with the genome assembly size and N50 values from libraries equalized to 3.4 million reads ∼137,000 and ∼4,000 bp larger, respectively, compared to the DNA extracted from infected capsicum without enrichment. Phytoplasmas from potato and capsicum were both enriched at a density of 1.049–1.058 g/ml. Finally, we present two highly contiguous ‘Ca. Phytoplasma australasia’ phytoplasma reference genomes sequenced from naturally infected Solanaceae hosts in Australia. Obtaining high-quality phytoplasma genomes from naturally infected hosts will improve insights into phytoplasma taxonomy, which will improve their detection and disease management.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
- *Correspondence: Bianca Rodrigues Jardim,
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
| |
Collapse
|
36
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
37
|
Comparison of Traditional and Next-Generation Approaches for Uncovering Phytoplasma Diversity, with Discovery of New Groups, Subgroups and Potential Vectors. BIOLOGY 2022; 11:biology11070977. [PMID: 36101358 PMCID: PMC9312118 DOI: 10.3390/biology11070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Phytoplasmas are bacteria transmitted by insects that cause severe diseases in many plants, including crops, worldwide. Most phytoplasma research focuses on the epidemiology of phytoplasma-associated diseases in agriculture, and relatively few efforts have been made to survey phytoplasma diversity in natural areas. We compared traditional methods for detecting and identifying phytoplasmas with a new method based on next-generation DNA sequencing and found that the next-generation method performs as well, or better, for identifying phytoplasmas in DNA extracted from plant-feeding insects. Using this method, we report several new country/region records and insect associations for known phytoplasmas, three new designated phytoplasma subgroups and three possible new groups. Abstract Despite several decades’ effort to detect and identify phytoplasmas (Mollicutes) using PCR and Sanger sequencing focusing on diseased plants, knowledge of phytoplasma biodiversity and vector associations remains highly incomplete. To improve protocols for documenting phytoplasma diversity and ecology, we used DNA extracted from phloem-feeding insects and compared traditional Sanger sequencing with a next-generation sequencing method, Anchored Hybrid Enrichment (AHE) for detecting and characterizing phytoplasmas. Among 22 of 180 leafhopper samples that initially tested positive for phytoplasmas using qPCR, AHE yielded phytoplasma 16Sr sequences for 20 (19 complete and 1 partial sequence) while Sanger sequencing yielded sequences for 16 (11 complete and 5 partial). AHE yielded phytoplasma sequences for an additional 7 samples (3 complete and 4 partial) that did not meet the qPCR threshold for phytoplasma positivity or yielded non-phytoplasma sequences using Sanger sequencing. This suggests that AHE is more efficient for obtaining phytoplasma sequences. Twenty-three samples with sufficient data were classified into eight 16Sr subgroups (16SrI-B, I-F, I-AO, III-U, V-C, IX-J, XI-C, XXXVII-A), three new subgroups (designated as 16SrVI-L, XV-D, XI-G) and three possible new groups. Our results suggest that screening phloem-feeding insects using qPCR and AHE sequencing may be the most efficient method for discovering new phytoplasmas.
Collapse
|
38
|
The Complete Genome of the “Flavescence Dorée” Phytoplasma Reveals Characteristics of Low Genome Plasticity. BIOLOGY 2022; 11:biology11070953. [PMID: 36101334 PMCID: PMC9312162 DOI: 10.3390/biology11070953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022]
Abstract
Members of the genus ‘Candidatus Phytoplasma’ are obligate intracellular bacteria restricted to phloem sieve elements and are able to colonize several tissues and the hemolymph in their insect vectors. The current unfeasibility of axenic culture and the low complexity of genomic sequences are obstacles in assembling complete chromosomes. Here, a method combining pathogen DNA enrichment from infected insects and dual deep-sequencing technologies was used to obtain the complete genome of a phytoplasma causing Grapevine Flavescence dorée. The de novo assembly generated a circular chromosome of 654,223 bp containing 506 protein-coding genes. Quality assessment of the draft showed a high degree of completeness. Comparative analysis with other phytoplasmas revealed the absence of potential mobile units and a reduced amount of putative phage-derived segments, suggesting a low genome plasticity. Phylogenetic analyses identified Candidatus Phytoplasma ziziphi as the closest fully sequenced relative. The “Flavescence dorée” phytoplasma strain CH genome also encoded for several putative effector proteins potentially playing a role in pathogen virulence. The availability of this genome provides the basis for the study of the pathogenicity mechanisms and evolution of the Flavescence dorée phytoplasma.
Collapse
|
39
|
Bertaccini A. Plants and Phytoplasmas: When Bacteria Modify Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111425. [PMID: 35684198 PMCID: PMC9182842 DOI: 10.3390/plants11111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 05/14/2023]
Abstract
Plant pathogen presence is very dangerous for agricultural ecosystems and causes huge economic losses. Phytoplasmas are insect-transmitted wall-less bacteria living in plants, only in the phloem tissues and in the emolymph of their insect vectors. They are able to manipulate several metabolic pathways of their hosts, very often without impairing their life. The molecular diversity described (49 'Candidatus Phytoplasma' species and about 300 ribosomal subgroups) is only in some cases related to their associated symptomatology. As for the other plant pathogens, it is necessary to verify their identity and recognize the symptoms associated with their presence to appropriately manage the diseases. However, the never-ending mechanism of patho-adaptation and the copresence of other pathogens makes this management difficult. Reducing the huge impact of phytoplasma-associated diseases in all the main crops and wild species is, however, relevant, in order to reduce their effects that are jeopardizing plant biodiversity.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| |
Collapse
|