1
|
Zhu LR, Mao YL, Hu Y, Sun YP, Hou J, Cui HL. Genome-based taxonomy of the family Haloarculaceae, proposal of Natronomonadaceae fam. nov., and description of four novel halophilic archaea from two saline lakes and a marine solar saltern. Syst Appl Microbiol 2025; 48:126592. [PMID: 40036997 DOI: 10.1016/j.syapm.2025.126592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
A new family related to the family Haloarculaceae was proposed and the genus Actinarchaeum was merged into the genus Halocatena through phylogenetic, phylogenomic, and comparative genomic analyses. Four strains KK48T, YCN56T, SYNS191T, and SYNS196T with new taxonomic status were isolated from inland saline lakes and a marine solar saltern. According to the comparison of 16S rRNA gene and rpoB' gene sequences, strains KK48T, YCN56T, SYNS191T, and SYNS196T showed high sequence similarities to the genera Salinibaculum and Salinirubellus, respectively. The values of average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity between these strains and the species of Salinibaculum and Salinirubellus ranged from 75.3 to 77.7 %, 24.5-25.9 % and 66.3-73.4 %, respectively. These data were well below the threshold for species classification, supporting their placements in new taxa. The major polar lipids of these strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether, mannosyl glucosyl diether, and disulfated mannosyl glucosyl diether. Based on the phenotypic, chemotaxonomic, phylogenetic, and phylogenomic properties, strains KK48T (= CGMCC 1.19060T = JCM 35607T), YCN56T (= CGMCC 1.62603T = JCM 36493T), SYNS191T (= CGMCC 1.62607T = JCM 36494T), and SYNS196T (= CGMCC 1.62608T = JCM 36495T) represent four novel species of the genera Salinibaculum and Salinirubellus. And Salinibaculum rarum sp. nov., Salinibaculum salinum sp. nov., Salinibaculum marinum sp. nov., and Salinirubellus litoreus sp. nov. are proposed to accommodate these strains.
Collapse
Affiliation(s)
- Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ya-Ping Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Mao YL, Dong XY, Tao CQ, Wu ZP, Shi XW, Hou J, Cui HL. Natronorarus salvus gen. nov., sp. nov., Halalkalicoccus ordinarius sp. nov., and Halalkalicoccus salilacus sp. nov., halophilic archaea from a soda lake and two saline lakes, and proposal to classify the genera Halalkalicoccus and Natronorarus into Halalkalicoccaceae fam. nov. in the order Halobacteriales within the class Halobacteria. Syst Appl Microbiol 2025; 48:126577. [PMID: 39700724 DOI: 10.1016/j.syapm.2024.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Four novel halophilic archaeal strains CGA53T, CG83T, FCH27T, and SEDH24 were isolated from a soda lake and two saline lakes in China, respectively. Strain CGA53T showed the highest 16S rRNA gene similarity (92.6%) to Salinilacihabitans rarus AD-4T, and the other three strains were found to be related to Halalkalicoccus species with similarities of 97.6-98.3%. Metagenomic studies indicated that these four strains are low abundant inhabitants detected in these hypersaline environments, and only one MAG of Chagannuoer Soda Lake (CG) could be assigned to the genus Halalkalicoccus. Their growth occurred at 20-60 °C (optima, 42, 37, 37-42, and 35 °C), 0.9-5.1 M NaCl (optima, 3.9, 2.6, 3.5, and 3 M), and 0-1.0 M MgCl2 (optima, 0.5, 0.7, and 0.1) and pH 5.5-10.5 (optima, 9.0, 7.5, 7.0, and 7.0), respectively. Phylogenetic and phylogenomic analyses revealed that strains CG83T, FCH27T, and SEDH24 cluster with the current species of the genus Halalkalicoccus, and strain CGA53T forms an independent branch separated from this genus. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values among strains CGA53T, CG83T, FCH27T, SEDH24, and the type species of the current genera within the class Halobacteria were 67.4-81.6%, 16.5-28.6% and 49.7-74.1%, respectively, clearly lower than the cutoff values for species demarcation. Strain CGA53T may represent a novel species of a new genus according to the cutoff value for genus demarcation of 65% AAI. Diverse differential phenotypic characteristics, such as nutrition, biochemical activities, antibiotic sensitivity, and H2S formation, were found among these four strains and Halalkalicoccus species. Genome-based classification supported that strains CGA53T, CG83T, FCH27T, SEDH24, and the current species of Halalkalicoccus represent a novel family of the order Halobacteriales within the class Halobacteria.
Collapse
Affiliation(s)
- Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cong-Qi Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhang-Ping Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiao-Wei Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Dou X, Zhang G, Tang H, Chen X, Chen B, Mei Y, Jiao H, Ren M. Carotenoids from Halophilic Archaea: A Novel Approach to Improve Egg Quality and Cecal Microbiota in Laying Hens. Animals (Basel) 2024; 14:3470. [PMID: 39682435 DOI: 10.3390/ani14233470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Carotenoids from different sources have different structures and functions, and their dietary components benefit the health of various organisms. The effects of halophilic Archaea-derived C50 carotenoids on poultry egg quality and gut microbiota remain largely unexplored. In this study, we isolated a carotenoid-secreting strain of Halalkalicoccus paucihalophilus, TRM89021, from the Pamir Plateau. We characterized the carotenoid pigments produced by this strain; the major components were bacterioruberin and its derivatives. The effects of these carotenoids on the egg quality and cecal microbiota composition of hens were investigated. Compared to the basal diet group (BDG), supplementation with carotenoids in the carotenoids-supplemented diet group (CDG) resulted in significantly lower a* and b* scores at week 5 and lower b* scores and Haugh units at week 2, while egg strength and weight were higher. CDG also showed increased yolk antioxidant capacity, higher glutathione peroxidase levels, and significantly lower catalase levels (p < 0.05). Plasma analysis revealed elevated total bilirubin and aspartate aminotransferase levels, along with reduced inorganic phosphorus levels in the CDG (p < 0.05). No significant differences in cecal microbiota diversity were observed between the groups at any taxonomic level. This result suggests that halophilic archaea-derived carotenoids have the potential to be used as natural feed supplements to improve egg quality. Our study provides a theoretical basis for applying archaea-derived carotenoids in poultry diets.
Collapse
Affiliation(s)
- Xufeng Dou
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar 843300, China
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Guodong Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Hao Tang
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar 843300, China
- College of Life Science and Technology, Tarim University, Alar 843300, China
| | - Xiaoxue Chen
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Beibei Chen
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Haihong Jiao
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Min Ren
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar 843300, China
- College of Life Science and Technology, Tarim University, Alar 843300, China
| |
Collapse
|
5
|
Matarredona L, Zafrilla B, Camacho M, Bonete M, Esclapez J. Understanding the tolerance of halophilic archaea to stress landscapes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70039. [PMID: 39568122 PMCID: PMC11578932 DOI: 10.1111/1758-2229.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Haloarchaea, known for their resilience to environmental fluctuations, require a minimum salt concentration of 10% (w/v) for growth and can survive up to 35% (w/v) salinity. In biotechnology, these halophiles have diverse industrial applications. This study investigates the tolerance responses of nine haloarchaea: Haloferax mediterranei, Haloferax volcanii, Haloferax gibbonsii, Halorubrum californiense, Halorubrum litoreum, Natrinema pellirubrum, Natrinema altunense, Haloterrigena thermotolerans and Haloarcula sinaiiensis, under various stressful conditions. All these archaea demonstrated the ability to thrive in the presence of toxic metals such as chromium, nickel, cobalt and arsenic, and their tolerance to significantly elevated lithium concentrations in the medium was remarkable. Among the studied haloarchaea, Hfx. mediterranei exhibited superior resilience, particularly against lithium, with an impressive minimum inhibitory concentration (MIC) of up to 4 M LiCl, even replacing NaCl entirely. Haloferax species showed specificity for conditions with maximal growth rates, while Htg. thermotolerans and Nnm. altunense displayed high resilience without losing growth throughout the ranges, although these were generally low. ICP-MS results highlighted the impressive intracellular lithium accumulation in Nnm. pellirubrum, emphasizing its potential significance in bioremediation. This research highlights a new characteristic of haloarchaea, their tolerance to high lithium concentrations and the potential for new applications in extreme industrial processes and bioremediation.
Collapse
Affiliation(s)
- Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - María‐José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| |
Collapse
|
6
|
Roessler K, Friedlander MC, VanSickle MY, Rush CL. Hanensula anomala isolated from the Berkeley Pit, Butte, MT, is a metal-specific extremophile. Microbiol Spectr 2024; 12:e0044424. [PMID: 39162504 PMCID: PMC11448421 DOI: 10.1128/spectrum.00444-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
A yeast-like extremophile organism, Hansenula anomala, has been isolated from the superfund site the Berkeley Pit Lake in Butte, Montana. Studies demonstrate H. anomala growth in some of the known Berkeley Pit Lake solutes. Microbial growth dynamics under controlled conditions were compared of H. anomala for multiple metal concentrations. Each solute/metal was tested separately at previously reported concentrations on the geochemistry of the Berkeley Pit lake in the first 0.2 m in spring (pH 2.5). H. anomala grew well with sulfur (S), MgSO4, CaSO4, potassium chloride (KCl), and NaSO4 and was inhibited with FeSO4, MnSO4, CuSO4, AlSO4, or ZnSO4. With the addition of elemental S, growth was observed for FeSO4 indicating minimal growth rescue. PCR amplification of genomic DNA from the organism using known ribosomal primers indicates the strain to be ATCC8168 (CBS 5759). From this data, it can be concluded that H. anomala ATCC8168 from the Berkeley Pit is an extremophile that exhibits metal-specific growth.IMPORTANCELaboratory growth studies of a strain of Hansenula anomala from the Berkeley Pit have found the organism to be metal specific indicating some unique metabolism possibilities. These studies show that this strain is metal-dependent and provides information about the adaptable tolerance of organisms in superfund sites as well as giving a basis for future bioremediation development utilizing H. anomala.
Collapse
Affiliation(s)
- Kyle Roessler
- Department of Life Sciences, Salish Kootenai College, Pablo, Montana, USA
| | | | - Marthe Y VanSickle
- Missoula County, District Attorney Justice Court Prosecution, Missoula, Montana, USA
| | - Christina L Rush
- Department of Life Sciences, Salish Kootenai College, Pablo, Montana, USA
| |
Collapse
|
7
|
Obayori OS, Salam LB, Ashade AO, Oseni TD, Kalu MD, Mustapha FM. An animal charcoal contaminated cottage industry soil highlighted by halophilic archaea dominance and decimation of bacteria. World J Microbiol Biotechnol 2024; 40:327. [PMID: 39299940 DOI: 10.1007/s11274-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
An animal charcoal contaminated cottage industry soil in Lagos, Nigeria (ACGT) was compared in an ex post facto study with a nearby unimpacted soil (ACGC). Hydrocarbon content was higher than regulatory limits in ACGT (180.2 mg/kg) but lower in ACGC (19.28 mg/kg). Heavy metals like nickel, cadmium, chromium and lead were below detection limit in ACGC. However, all these metals, except cadmium, were detected in ACGT, but at concentrations below regulatory limits. Furthermore, copper (253.205 mg/kg) and zinc (422.630 mg/kg) were above regulatory limits in ACGT. Next generation sequencing revealed that the procaryotic community was dominated by bacteria in ACGC (62%) while in ACGT archaea dominated (76%). Dominant phyla in ACGC were Euryarchaeota (37%), Pseudomonadota (16%) and Actinomycetota (12%). In ACGT it was Euryarchaeota (76%), Bacillota (9%), Pseudomonadota (7%) and Candidatus Nanohaloarchaeota (5%). Dominant Halobacteria genera in ACGT were Halobacterium (16%), Halorientalis (16%), unranked halophilic archaeon (13%) Salarchaeum (6%) and Candidatus Nanohalobium (5%), whereas ACGC showed greater diversity dominated by bacterial genera Salimicrobium (7%) and Halomonas (3%). Heavy metals homeostasis genes, especially for copper, were fairly represented in both soils but with bacterial taxonomic affiliations. Sites like ACGT, hitherto poorly studied and understood, could be sources of novel bioresources.
Collapse
Affiliation(s)
| | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | - Ahmeed Olalekan Ashade
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | | | - Mandy Divine Kalu
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | | |
Collapse
|
8
|
Rawat M, Chauhan M, Pandey A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 2024; 206:247. [PMID: 38713374 DOI: 10.1007/s00203-024-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Collapse
Affiliation(s)
- Manvi Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
9
|
Hu Y, Ma X, Tan S, Li XX, Cheng M, Hou J, Cui HL. Genome-based classification of genera Halosegnis and Salella, and description of four novel halophilic archaea isolated from a tidal flat. Antonie Van Leeuwenhoek 2024; 117:51. [PMID: 38472444 DOI: 10.1007/s10482-024-01952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The current species of Halosegnis and Salella within the class Halobacteria are closely related based on phylogenetic, phylogenomic, and comparative genomic analyses. The Halosegnis species showed 99.8-100.0% 16S rRNA and 96.6-99.6% rpoB' gene similarities to the Salella species, respectively. Phylogenetic and phylogenomic analyses showed that Salella cibi CBA1133T, the sole species of Salella, formed a single tight cluster with Halosegnis longus F12-1T, then with Halosegnis rubeus F17-44T. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values between Salella cibi CBA1133T and Halosegnis longus F12-1T were 99.2, 94.2, and 98.6%, respectively, much higher than the thresholds for species demarcation. This genome-based classification revealed that the genus Salella should be merged with Halosegnis, and Salella cibi should be a later heterotypic synonym of Halosegnis longus. Halophilic archaeal strains DT72T, DT80T, DT85T, and DT116T, isolated from the saline soil of a tidal flat in China, were subjected to polyphasic taxonomic characterization. The phenotypic, chemotaxonomic, phylogenetic, and phylogenomic features indicated that strains DT72T (= CGMCC 1.18925T = JCM 35418T), DT80T (= CGMCC 1.18926T = JCM 35419T), DT85T (= CGMCC 1.19049T = JCM 35605T), and DT116T (= CGMCC 1.19045T = JCM 35606T) represent four novel species of the genera Halorussus, Halosegnis and Haloglomus, respectively, for which the names, Halorussus caseinilyticus sp. nov., Halorussus lipolyticus sp. nov., Halosegnis marinus sp. nov., and Haloglomus litoreum sp. nov., are proposed.
Collapse
Affiliation(s)
- Yao Hu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
10
|
Hu Y, Ma X, Li XX, Tan S, Cheng M, Hou J, Cui HL. Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov., halophilic archaea isolated from saline soil and an inland solar saltern. Int J Syst Evol Microbiol 2024; 74. [PMID: 38197785 DOI: 10.1099/ijsem.0.006231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Two extremely halophilic archaeal strains, GSLN9T and XZYJT29T, were isolated from the saline soil in different regions of western China. Both strains GSLN9T and XZYJT29T have two 16S rRNA genes with similarities of 95.1 and 94.8 %, respectively. Strain GSLN9T was mostly related to the genus Halomicrococcus based on 16S rRNA (showing 91.0-96.0 % identities) and rpoB' genes (showing 92.0 % identity). Strain XZYJT29T showed 92.1-97.6 % (16S rRNA gene) and 91.4-93.1 % (rpoB' gene) sequence similarities to its relatives in the genus Halosimplex, respectively. The polar lipid profile of strain GSLN9T included phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulphate (PGS), sulphated mannosyl glucosyl diether (S-DGD-1) and sulphated galactosyl mannosyl glucosyl diether (S-TGD-1), mostly similar to that of Halomicrococcus hydrotolerans H22T. PA, PG, PGP-Me, S-DGD-1 (S-DGD-PA), S2-DGD, S-TGD-1 and an unidentified glycolipid were detected in strain XZYJT29T; this polar lipid composition is similar to those of members of the genus Halosimplex. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between these two strains and their relatives of the genera Halomicrococcus and Halosimplex were no more than 82, 27 and 80 %, respectively, much lower than the thresholds for species demarcation. Other phenotypic characterization results indicated that strains GSLN9T and XZYJT29T can be differentiated from the current species of the genera Halomicrococcus and Halosimplex, respectively. These results revealed that strains GSLN9T (=CGMCC 1.15215T=JCM 30842T) and XZYJT29T (=CGMCC 1.15828T=JCM 31853T) represent novel species of Halomicrococcus and Halosimplex, for which the names Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov. are proposed.
Collapse
Affiliation(s)
- Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
11
|
Tan S, Cheng M, Li XX, Hu Y, Ma X, Hou J, Cui HL. Natronosalvus halobius gen. nov., sp. nov., Natronosalvus caseinilyticus sp. nov., Natronosalvus vescus sp. nov., Natronosalvus rutilus sp. nov. and Natronosalvus amylolyticus sp. nov., halophilic archaea isolated from salt lakes and soda lakes. Int J Syst Evol Microbiol 2023; 73. [PMID: 37728966 DOI: 10.1099/ijsem.0.006036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Five halophilic archaeal strains (AGai3-5T, KZCA101T, CGA3T, WLHS1T and WLHSJ1T) were isolated from salt lakes and soda lakes in PR China. These strains had low 16S rRNA gene similarities (91.3-96.0 %) to closely related species of the family Natrialbaceae and may represent a new genus of the family. Phylogenetic and phylogenomic analyses revealed that these strains formed a distinct clade, separate from the nearby genera Natronobiforma and Saliphagus. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity (AAI) values among these five strains and the current members of the family Natrialbaceae were 72-90, 20-42 and 62-91 %, respectively, clearly below the threshold values for species demarcation. According to the critical value of AAI (≤76 %) proposed to differentiate genera within the family Natrialbaceae, it was further indicated that these strains represented a novel genus within the family. These strains could be distinguished from the related genera according to differential phenotypic characteristics. The major lipids of these strains were phosphatidic acid (PA), phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, mannosyl glucosyl diether (DGD-PA), sulphated DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. The phenotypic, chemotaxonomic, phylogenetic and phylogenomic features indicated that strains AGai3-5T (=CGMCC 1.16078T=JCM 33549T), KZCA101T (=CGMCC 1.17431T=JCM 35074T), CGA3T (=CGMCC 1.17463T=JCM 34318T), WLHS1T (=CGMCC 1.13780T=JCM 33562T) and WLHSJ1T (=CGMCC 1.13784T=JCM 33563T) represent five novel species of a new genus within the family Natrialbaceae, named Natronosalvus halobius gen. nov., sp. nov., Natronosalvus caseinilyticus sp. nov., Natronosalvus vescus sp. nov., Natronosalvus rutilus sp. nov. and Natronosalvus amylolyticus sp. nov., respectively.
Collapse
Affiliation(s)
- Shun Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
12
|
Straková D, Sánchez-Porro C, de la Haba RR, Ventosa A. Natrinema salsiterrestre sp. nov., an extremely halophilic archaeon isolated from a hypersaline soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37578894 DOI: 10.1099/ijsem.0.005960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An extremely halophilic archaeal strain, designated S1CR25-10T, was isolated from hypersaline soil sampled in the Odiel Saltmarshes Natural Area in Southwestern Spain (Huelva) and subjected to a polyphasic taxonomic characterization. The cells were Gram-stain-negative, motile and their colonies were pink-pigmented. It was a strictly aerobic haloarchaeon that could grow at 25-55 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 12-30 % (w/v) total salts (optimum, 20-25 %, w/v). The phylogenetic analysis based on the comparison of the 16S rRNA gene sequences revealed that strain S1CR25-10T belongs to the genus Natrinema, with 98.9 % similarity to Natrinema salinisoli SLN56T. In addition, the values of orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity were below the threshold limits accepted for prokaryotic species delineation, with N. salinisoli SLN56T showing the highest relatedness values (92.6 % and 48.4 %, respectively). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content of the isolate was 63.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characterization and the whole genome results, strain S1CR25-10T represents a new species within the genus Natrinema, for which the name Natrinema salsiterrestre sp. nov., with type strain S1CR25-10T (=CECT 30623T=CCM 9251T), is proposed.
Collapse
Affiliation(s)
- Dáša Straková
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
13
|
Li XX, Tan S, Cheng M, Hu Y, Ma X, Hou J, Cui HL. Salinilacihabitans rarus gen. nov., sp. nov., Natrononativus amylolyticus gen. nov., sp. nov., Natronobeatus ordinarius gen. nov., sp. nov., and Halovivax gelatinilyticus sp. nov., halophilic archaea, isolated from a salt lake and soda lakes. Extremophiles 2023; 27:15. [PMID: 37400737 DOI: 10.1007/s00792-023-01303-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Four halophilic archaea strains, AD-4T, CGA30T, CGA73T, and WLHSJ27T, were isolated from a salt lake and two soda lakes located in different regions of China. The 16S rRNA and rpoB' gene sequence similarities among strains AD-4T, CGA30T, CGA73T, WLHSJ27T, and the current species of the family Natrialbaceae were 90.9-97.5% and 83.1-91.8%, respectively. The phylogenetic and phylogenomic analyses revealed that these four strains separated from existing genera in the family Natrialbaceae and formed distant branches. The ANI, isDDH, and AAI values among these four strains and the current members of the family Natrialbaceae were 72-79%, 20-25%, and 63-73%, respectively, much lower than the threshold values for species demarcation. Strains AD-4T, CGA73T, and WLHSJ27T may represent three novel genera of the family Natrialbaceae according to the cutoff value of AAI (≤ 76%) proposed to differentiate genera within the family Natrialbaceae. These four strains could be distinguished from the related genera according to differential phenotypic characteristics. The major phospholipids of these four strains were identical while their glycolipid profiles were diverse. DGD-1 is a major glycolipid found in strain AD-4T, trace glycolipids, DGD-1, and S-DGD-1, and (or) S-TGD-1 was found in the other three strains. The major respiratory quinones detected in the four strains were menaquinone MK-8 and MK-8(H2). This polyphasic classification indicated that strains AD-4T, CGA73T, and WLHSJ27T represent three novel species of three new genera with the family Natrialbaceae, and strain CGA30T represents a novel species of Halovivax.
Collapse
Affiliation(s)
- Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
14
|
Hu Y, Ma X, Li XX, Tan S, Cheng M, Hou J, Cui HL. Natrinema caseinilyticum sp. nov., Natrinema gelatinilyticum sp. nov., Natrinema marinum sp. nov., Natrinema zhouii sp. nov., extremely halophilic archaea isolated from marine environments and a salt mine. Extremophiles 2023; 27:9. [PMID: 37000350 DOI: 10.1007/s00792-023-01294-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Four extremely halophilic archaeal strains (ZJ2T, BND6T, DT87T, and YPL30T) were isolated from marine environments and a salt mine in China. The 16S rRNA and rpoB' gene sequence similarities among strains ZJ2T, BND6T, DT87T, YPL30T and the current species of Natrinema were 93.2-99.3% and 89.2-95.8%, respectively. Both phylogenetic and phylogenomic analyses revealed that strains ZJ2T, BND6T, DT87T, and YPL30T cluster with the Natrinema members. The overall genome-related indexes (ANI, isDDH, and AAI) among these four strains and the current species of genus Natrinema were 70-88%, 22-43% and 75-89%, respectively, clearly below the threshold values for species boundary. Strains ZJ2T, BND6T, DT87T, and YPL30T could be distinguished from the related species according to differential phenotypic characteristics. The major polar lipids of the four strains were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), sulfated mannosyl glucosyl diether (S-DGD-1), and disulfated mannosyl glucosyl diether (S2-DGD). The phenotypic, chemotaxonomic, phylogenetic and phylogenomic features indicated that strains ZJ2T (= CGMCC 1.18786 T = JCM 34918 T), BND6T (= CGMCC 1.18777 T = JCM 34909 T), DT87T (= CGMCC 1.18921 T = JCM 35420 T), and YPL30T (= CGMCC 1.15337 T = JCM 31113 T) represent four novel species of the genus Natrinema, for which the names, Natrinema caseinilyticum sp. nov., Natrinema gelatinilyticum sp. nov., Natrinema marinum sp. nov., and Natrinema zhouii sp. nov., are proposed.
Collapse
Affiliation(s)
- Yao Hu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Xue Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
15
|
Sun YP, Wang BB, Zheng XW, Wu ZP, Hou J, Cui HL. Description of Halosolutus amylolyticus gen. nov., sp. nov., Halosolutus halophilus sp. nov. and Halosolutus gelatinilyticus sp. nov., and genome-based taxonomy of genera Natribaculum and Halovarius. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three extremely halophilic archaeal strains (LT55T, SQT-29-1T and WLHS5T) were isolated from Gobi saline soil and a salt lake, China. These strains were most related to the genera
Natribaculum
and
Halovarius
(92.6–95.1 % similarities), and showed low similarities with other genera within the family
Natrialbaceae
based on 16S rRNA genes. Phylogenomic analysis confirmed that the three strains formed a distinct clade separated from the related genera
Halostagnicola
and
Natronococcus
, which indicated that they may represent a novel genus of the family
Natrialbaceae
. The average nucleotide identity (ANI), in silico DNA–DNA hybridization (isDDH) and average amino acid identity (AAI) values among the three strains were no more than 87, 34 and 85 %, respectively, much lower than the threshold values for species demarcation. The major phospholipids of the three strains were phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylglycerol phosphate methyl ester (PGP-Me). The glycolipid profiles of the three strains were diverse; sulfated mannosyl glucosyl diether (S-DGD-1) and disulfated mannosyl glucosyl diether (S2-DGD) were found in strains LT55T and WLHS5T, while mannosyl glucosyl diether (DGD-1) and S-DGD-1 in strain SQT-29-1T. The combination of phenotypic, chemotaxonomic, phylogenetic and genomic analyses suggested that strains WLHS5T (=CGMCC 1.13781T = JCM 33558T), SQT-29-1T (=CGMCC 1.16065T = JCM 33554T) and LT55T (=CGMCC 1.15188T = JCM 30838T) represent three novel species of a new genus within the family
Natrialbaceae
, for which the names, Halosolutus amylolyticus gen. nov., sp. nov., Halosolutus gelatinilyticus sp. nov. and Halosolutus halophilus sp. nov., are proposed. Genome-based classification of genera
Natribaculum
and
Halovarius
revealed that
Halovarius luteus
should be transferred to the genus
Natribaculum
as Natribaculum luteum comb. nov. and
Natribaculum longum
as a heterotypic synonym of
Natribaculum breve
Liu et al. 2015.
Collapse
Affiliation(s)
- Ya-Ping Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Bei-Bei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xi-Wen Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhang-Ping Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|