1
|
Prokofeva MI, Elcheninov AG, Klyukina AA, Novikov AA, Kachmazov GS, Toshchakov SV, Frolov EN, Podosokorskaya OA. Anaeroselena agilis gen. nov., sp. nov., a Novel Sulfite- and Arsenate-Respiring Bacterium Within the Family Acetonemataceae Isolated from a Thermal Spring of North Ossetia. Curr Microbiol 2025; 82:71. [PMID: 39757269 DOI: 10.1007/s00284-024-04046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-clT, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-clT grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.3%) and within pH range 4.0-8.7 (optimum pH 6.8-7.3). It was a strictly anaerobic microorganism capable of fermentation and respiration on organic acids and proteinaceous substrates. Sulfur, sulfite, polysulfide, and arsenate were used as electron acceptors. In addition to heterotrophic growth it grew autotrophically with H2/CO2. The major fatty acids were C16:1 ω8c and C16:0. The size of the genome and genomic DNA G+C content of strain 4137-clT were 4.5 Mb and 59.2%, respectively. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 4137-clT represented a distinct lineage of the family Acetonemataceae within the class Negativicutes. As inferred from the morphology, physiology, chemotaxonomical and phylogenomic analyses, strain 4137-clT ought to be recognized as a novel genus for which the name Anaeroselena agilis gen. nov., sp. nov., we propose. The type strain is 4137-clT(=KCTC 25383T = VKM B-3575T).
Collapse
Affiliation(s)
- Maria I Prokofeva
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexander G Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexandra A Klyukina
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninsky Prospect 65/1, Moscow, Russia, 119991
| | - Gennady S Kachmazov
- Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University Named After K.L.Khetagurov, Vatutina Str., 44-46, Vladikavkaz, Russia, 362025
| | - Stepan V Toshchakov
- National Research Centre "Kurchatov Institute", Akademika Kurchatova Sq., 1, Moscow, Russia, 123182
| | - Evgenii N Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Olga A Podosokorskaya
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312.
| |
Collapse
|
2
|
Li Y, Zhang D, Bo D, Peng D, Sun M, Zheng J. A taxonomic note on the order Caryophanales: description of 12 novel families and emended description of 21 families. Int J Syst Evol Microbiol 2024; 74. [PMID: 39556488 DOI: 10.1099/ijsem.0.006539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
The order Caryophanales, belonging to class Bacilli, is globally distributed in various ecosystems. Currently, this order comprised 12 families that show vast phenotypic, ecological and genotypic variation. The classification of Caryophanales at the family level is currently mainly based on 16S rRNA gene sequencing analysis and the presence of shared phenotypic characteristics, resulting in noticeable anomalies. Our present study revises the taxonomy of Caryophanales based on 1080 available high-quality genome sequences of type strains. The evaluated parameters included the core-genome phylogeny, pairwise average aa identity, lineage-specific core genes, physiological criteria and ecological parameters. Based on the results of this polyphasic approach, we propose that the order Caryophanales be reclassified into 41 families, which include the existing 12 families, 17 families in a recent Validation List in the IJSEM (Validation List no. 215) and 12 novel families for which we propose the names Aureibacillaceae, Cytobacillaceae, Domibacillaceae, Falsibacillaceae, Heyndrickxiaceae, Lottiidibacillaceae, Oxalophagaceae, Pradoshiaceae, Rossellomoreaceae, Schinkiaceae, Sulfoacidibacillaceae and Sutcliffiellaceae. This work represents a genomic sequence-based and systematic framework for classifying the order Caryophanales at the family level, providing new insights into its evolution.
Collapse
Affiliation(s)
- Yangjie Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dechao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dexin Bo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
3
|
Golyshina OV, Lunev EA, Distaso MA, Bargiela R, Gaines MC, Daum B, Ferrer M, Bale NJ, Koenen M, Damsté JSS, Yakimov MM, Golyshin PN. Oxyplasma meridianum gen. nov., sp. nov., an extremely acidophilic organotrophic member of the order Thermoplasmatales. Int J Syst Evol Microbiol 2024; 74:006499. [PMID: 39190454 PMCID: PMC11349054 DOI: 10.1099/ijsem.0.006499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
A mesophilic, hyperacidophilic archaeon, strain M1T, was isolated from a rock sample from Vulcano Island, Italy. Cells of this organism were cocci with an average diameter of 1 µm. Some cells possessed filaments. The strain grew in the range of temperatures between 15 and 52 °C and pH 0.5-4.0 with growth optima at 40 °C and pH 1.0. Strain M1T was aerobic and chemoorganotrophic, growing on complex substrates, such as casamino acids, trypticase, tryptone, yeast and beef extracts. No growth at expenses of oxidation of elemental sulphur or reduced sulphur compounds, pyrite, or ferrous sulphate was observed. The core lipids were glycerol dibiphytanyl glycerol tetraether lipids (membrane spanning) with 0 to 4 cyclopentane moieties and archaeol, with trace amounts of hydroxy archaeol. The dominant quinone was MK-7 : 7. The genome size of M1T was 1.67 Mbp with a G+C content of 39.76 mol%, and both characteristics were well within the common range for Thermoplasmatales. The phylogenetic analysis based on 16S rRNA gene sequence placed the strain M1T within the order Thermoplasmatales with sequence identities of 90.9, 90.3 and 90.5% to the closest SSU rRNA gene sequences from organisms with validly published names, Thermoplasma acidophilum, Thermoplasma volcanium and Thermogymnomonas acidicola, respectively. Based on the results of our genomic, phylogenetic, physiological and chemotaxonomic studies, we propose that strain M1T (=DSM 116605T=JCM 36570T) represents a new genus and species, Oxyplasma meridianum gen. nov., sp. nov., within the order Thermoplasmatales.
Collapse
Affiliation(s)
- Olga V. Golyshina
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Evgenii A. Lunev
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Marco A. Distaso
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Matthew C. Gaines
- Living Systems Institute and Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute and Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | | | - Peter N. Golyshin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| |
Collapse
|
6
|
Tang SK, Zhi XY, Zhang Y, Makarova KS, Liu BB, Zheng GS, Zhang ZP, Zheng HJ, Wolf YI, Zhao YR, Jiang SH, Chen XM, Li EY, Zhang T, Chen PR, Feng YZ, Xiang MX, Lin ZQ, Shi JH, Chang C, Zhang X, Li R, Lou K, Wang Y, Chang L, Yin M, Yang LL, Gao HY, Zhang ZK, Tao TS, Guan TW, He FC, Lu YH, Cui HL, Koonin EV, Zhao GP, Xu P. Addendum: Cellular differentiation into hyphae and spores in halophilic archaea. Nat Commun 2024; 15:523. [PMID: 38302496 PMCID: PMC10834514 DOI: 10.1038/s41467-024-44821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Shu-Kun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Bing-Bing Liu
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Guo-Song Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhen-Peng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 201203, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Yu-Rong Zhao
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Song-Hao Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Xi-Ming Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - En-Yuan Li
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Pei-Ru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Yu-Zhou Feng
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ming-Xian Xiang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhi-Qian Lin
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Jia-Hui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Xue Zhang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Rui Li
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Kai Lou
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Yun Wang
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Min Yin
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ling-Ling Yang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Zhong-Kai Zhang
- Biotechnology and Genetic Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Tian-Shen Tao
- Department of Microbiology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Tong-Wei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Fu-Chu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China.
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China.
- Department of Microbiology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
- Guizhou University, School of Medicine, Guiyang, 550025, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|