1
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
2
|
Specific and Spillover Effects on Vectors Following Infection of Two RNA Viruses in Pepper Plants. INSECTS 2020; 11:insects11090602. [PMID: 32899551 PMCID: PMC7564562 DOI: 10.3390/insects11090602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Mixed infection of plant viruses is ubiquitous in nature and can affect virus-plant-vector interactions differently than single virus infection. While several studies have examined virus-virus interactions involving mixed virus infection, relatively few have examined effects of mixed virus infection on vector preference and fitness, especially when multiple vectors are involved. This study explored how single and mixed viral infection of a non-persistently transmitted cucumber mosaic virus (CMV) and propagative and persistently-transmitted tomato spotted wilt orthotospovirus (TSWV) in pepper, Capsicum annum L., influenced the preference and fitness of their vectors, the green peach aphid, Myzus persicae (Sulzer), and the tobacco thrips, Frankliniella fusca (Hinds), respectively. In general, mixed infected plants exhibited severe symptoms compared with individually infected plants. An antagonistic interaction between the two viruses was observed when CMV titer was reduced following mixed infection with TSWV in comparison with the single infection. TSWV titer did not differ between single and mixed infection. Myzus persicae settling preference and median developmental were not significantly different between CMV and/or TSWV-infected and non-infected plants. Moreover, M. persicae fecundity did not differ between CMV-infected and non-infected pepper plants. However, M. persicae fecundity was substantially greater on TSWV-infected plants than non-infected plants. Myzus persicae fecundity on mixed-infected plants was significantly lower than on singly-infected and non-infected plants. Frankliniella fusca fecundity was higher on CMV and/or TSWV-infected pepper plants than non-infected pepper plants. Furthermore, F. fusca-induced feeding damage was higher on TSWV-infected than on CMV-infected, mixed-infected, or non-infected pepper plants. Overall, our results indicate that the effects of mixed virus infection on vectors were not different from those observed following single virus infection. Virus-induced host phenotype-modulated effects were realized on both specific and non-specific vectors, suggesting crosstalk involving all vectors and viruses in this pathosystem. The driving forces of these interactions need to be further examined. The effects of interactions between two viruses and two vectors towards epidemics of one or both viruses also need to be examined.
Collapse
|
3
|
Gadhave KR, Dutta B, Coolong T, Srinivasan R. A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Sci Rep 2019; 9:2503. [PMID: 30792431 PMCID: PMC6385306 DOI: 10.1038/s41598-019-39256-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/22/2019] [Indexed: 11/08/2022] Open
Abstract
The association of plant viruses with their vectors has significant implications for virus transmission and spread. Only a few studies, with even fewer pathosystems, have explored non-persistent (NP) virus-vector interactions that are presumed to be transient. We studied how a NP virus, Papaya ringspot virus (PRSV) influenced the behavior and biology of its vector, the melon aphid (Aphis gossypii Glover) and the non-vector, silverleaf whitefly (Bemisia tabaci Gennadius). We also assessed whether the fitness effects on aphids are modulated through changes in the host plant, squash (Cucurbita pepo L.) nutrient profile. The overall performance of A. gossypii was substantially higher on PRSV-infected plants, along with increased arrestment on PRSV-infected than non-infected plants. No such PRSV-modulated fitness effects were observed with B. tabaci. PRSV-infected plants had increased concentrations of free essential amino acids: threonine, arginine and lysine; non-essential amino acids: glycine and homocysteine; and soluble carbohydrates: galactose, raffinose and cellobiose. In general, PRSV encouraged long-term feeding and enhanced fitness of A. gossypii through host plant nutrient enrichment. These findings provide evidence for a NP virus mediated positive fitness effects on its vector, with no spillover fitness benefits to the non-vector within the same feeding guild.
Collapse
Affiliation(s)
- Kiran R Gadhave
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA
| | - Timothy Coolong
- Department of Plant Pathology, University of Georgia, 2360 Rainwater Road, Tifton, GA, 31793, USA
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| |
Collapse
|
4
|
Webster CG, Pichon E, van Munster M, Monsion B, Deshoux M, Gargani D, Calevro F, Jimenez J, Moreno A, Krenz B, Thompson JR, Perry KL, Fereres A, Blanc S, Uzest M. Identification of Plant Virus Receptor Candidates in the Stylets of Their Aphid Vectors. J Virol 2018; 92:e00432-18. [PMID: 29769332 PMCID: PMC6026765 DOI: 10.1128/jvi.00432-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
Plant viruses transmitted by insects cause tremendous losses in most important crops around the world. The identification of receptors of plant viruses within their insect vectors is a key challenge to understanding the mechanisms of transmission and offers an avenue for future alternative control strategies to limit viral spread. We here report the identification of two cuticular proteins within aphid mouthparts, and we provide experimental support for the role of one of them in the transmission of a noncirculative virus. These two proteins, named Stylin-01 and Stylin-02, belong to the RR-1 cuticular protein subfamily and are highly conserved among aphid species. Using an immunolabeling approach, they were localized in the maxillary stylets of the pea aphid Acyrthosiphon pisum and the green peach aphid Myzus persicae, in the acrostyle, an organ earlier shown to harbor receptors of a noncirculative virus. A peptide motif present at the C termini of both Stylin-01 and Stylin-02 is readily accessible all over the surface of the acrostyle. Competition for in vitro binding to the acrostyle was observed between an antibody targeting this peptide and the helper component protein P2 of Cauliflower mosaic virus Furthermore, silencing the stylin-01 but not stylin-02 gene through RNA interference decreased the efficiency of Cauliflower mosaic virus transmission by Myzus persicae These results identify the first cuticular proteins ever reported within arthropod mouthparts and distinguish Stylin-01 as the best candidate receptor for the aphid transmission of noncirculative plant viruses.IMPORTANCE Most noncirculative plant viruses transmitted by insect vectors bind to their mouthparts. They are acquired and inoculated within seconds when insects hop from plant to plant. The receptors involved remain totally elusive due to a long-standing technical bottleneck in working with insect cuticle. Here we characterize the role of the two first cuticular proteins ever identified in arthropod mouthparts. A domain of these proteins is directly accessible at the surface of the cuticle of the acrostyle, an organ at the tip of aphid stylets. The acrostyle has been shown to bind a plant virus, and we consistently demonstrated that one of the identified proteins is involved in viral transmission. Our findings provide an approach to identify proteins in insect mouthparts and point at an unprecedented gene candidate for a plant virus receptor.
Collapse
Affiliation(s)
- Craig G Webster
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Elodie Pichon
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Manuella van Munster
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Baptiste Monsion
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Maëlle Deshoux
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Daniel Gargani
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Federica Calevro
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, Villeurbanne, France
| | - Jaime Jimenez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Aranzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Björn Krenz
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Stéphane Blanc
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marilyne Uzest
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|