1
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Qi SY, Yang MM, Li CY, Yu K, Deng SL. The HPV viral regulatory mechanism of TLRs and the related treatments for HPV-associated cancers. Front Immunol 2024; 15:1407649. [PMID: 38812510 PMCID: PMC11133576 DOI: 10.3389/fimmu.2024.1407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Infection with human papillomavirus (HPV) typically leads to cervical cancer, skin related cancers and many other tumors. HPV is mainly responsible for evading immune tumor monitoring in HPV related cancers. Toll like receptors (TLRs) are particular pattern recognition molecules. When the body is facing immune danger, it can lead to innate and direct adaptive immunity. TLR plays an important role in initiating antiviral immune responses. HPV can affect the expression level of TLR and interfere with TLR related signaling pathways, resulting in sustained viral infection and even carcinogenesis. This paper introduces the HPV virus and HPV related cancers. We discussed the present comprehension of TLR, its expression and signaling, as well as its role in HPV infection. We also provided a detailed introduction to immunotherapy methods for HPV related diseases based on TLR agonists. This will provide insights into methods that support the therapeutic method of HPV related conditions with TLR agonists.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Miao-Miao Yang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Chong-Yang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- National Center of Technology Innovation for animal model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Romero-Masters JC, Muehlbauer LK, Hayes M, Grace M, Shishkova E, Coon JJ, Munger K, Lambert PF. MmuPV1 E6 induces cell proliferation and other hallmarks of cancer. mBio 2023; 14:e0245823. [PMID: 37905801 PMCID: PMC10746199 DOI: 10.1128/mbio.02458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura K. Muehlbauer
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Evgenia Shishkova
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Morale MG, Tamura RE, Cintra R, Araújo NM, Villa LL. TLR4 and SARM1 modulate survival and chemoresistance in an HPV-positive cervical cancer cell line. Sci Rep 2022; 12:6714. [PMID: 35468924 PMCID: PMC9039070 DOI: 10.1038/s41598-022-09980-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Human Papillomavirus is responsible for a wide range of mucosal lesions and tumors. The immune system participate in tumorigenesis in different ways. For example, signaling pathways triggered by Toll-like receptors (TLR) play a role in chemotherapy resistance in several tumor types and are candidates for contributing to the development of HPV-induced tumors. Here, we studied the receptor TLR4 and the adaptor molecule SARM1 in HeLa cells, an HPV-positive cervical cancer cell line. Knocking out of these genes individually proved to be important for maintaining cell viability and proliferation. TLR4 knock out cells were more sensitive to cisplatin treatment, which was illustrated by an increased frequency of apoptotic cells. Furthermore, TLR4 and SARM1 modulated ROS production, which was induced by cell death in response to cisplatin. In conclusion, TLR4 and SARM1 are important for therapy resistance and cervical cancer cell viability and may be relevant clinical targets.
Collapse
|
6
|
Padash Barmchi M, Thomas M, Thatte JV, Vats A, Zhang B, Cagan RL, Banks L. Inhibition of kinase IKKβ suppresses cellular abnormalities induced by the human papillomavirus oncoprotein HPV 18E6. Sci Rep 2021; 11:1111. [PMID: 33441820 PMCID: PMC7807017 DOI: 10.1038/s41598-020-80193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
Human papillomavirus (HPV) is the leading cause of cervical cancer and has been implicated in several other cancer types including vaginal, vulvar, penile, and oropharyngeal cancers. Despite the recent availability of a vaccine, there are still over 310,000 deaths each year worldwide. Current treatments for HPV-mediated cancers show limited efficacy, and would benefit from improved understanding of disease mechanisms. Recently, we developed a Drosophila 'HPV 18 E6' model that displayed loss of cellular morphology and polarity, junctional disorganization, and degradation of the major E6 target Magi; we further provided evidence that mechanisms underlying HPV E6-induced cellular abnormalities are conserved between humans and flies. Here, we report a functional genetic screen of the Drosophila kinome that identified IKK[Formula: see text]-a regulator of NF-κB-as an enhancer of E6-induced cellular defects. We demonstrate that inhibition of IKK[Formula: see text] reduces Magi degradation and that this effect correlates with hyperphosphorylation of E6. Further, the reduction in IKK[Formula: see text] suppressed the cellular transformation caused by the cooperative action of HPVE6 and the oncogenic Ras. Finally, we demonstrate that the interaction between IKK[Formula: see text] and E6 is conserved in human cells: inhibition of IKK[Formula: see text] blocked the growth of cervical cancer cells, suggesting that IKK[Formula: see text] may serve as a novel therapeutic target for HPV-mediated cancers.
Collapse
Affiliation(s)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jayashree V Thatte
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Arushi Vats
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ross L Cagan
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, Scotland, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
7
|
Xu X, Yuan S, Zhang X, Lou H. Immune Response of Plasmacytoid Dendritic Cells Stimulated by Human Papillomavirus (HPV) E6 in an In Vitro System. Med Sci Monit 2020; 26:e919770. [PMID: 32089541 PMCID: PMC7057736 DOI: 10.12659/msm.919770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to analyze the changes in plasmacytoid dendritic cell (pDC) immunophenotypes when co-cultured with Caski cells and stimulated by human papillomavirus (HPV) E6 in vitro, and thus to discuss the immunoregulatory roles of pDCs in the tumorigenesis of cervical cancer. Material/Methods The immunophenotypic expression of pDCs was analyzed under stimulation of HPV E6 and co-culturing with Caski cells in vitro. Results HPV E6 infection caused significantly increased expression of CD40 in HPV16 M and HPV16 H groups MyD88 in HPV16 M,HPV16 H, and HPV18L groups; and TRAF6 in HPV16 M, HPV16 H, and HPV18L groups. pDCs co-cultured with Caski cells showed significantly lower expression of MyD88 and TRAF6 compared with the control. Conclusions The expression of MyD88 and TRAF6 might vary in different stages of HPV infection. pDCs might regulate CD40 to participate in the tumorigenesis and progression of cervical cancer, but related mechanisms still need further investigation.
Collapse
Affiliation(s)
- Xiaoxian Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shuhui Yuan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaojing Zhang
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hanmei Lou
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
8
|
Campos RG, Malacara Rosas A, Gutiérrez Santillán E, Delgado Gutiérrez M, Torres Orozco RE, García Martínez ED, Torres Bernal LF, Rosas Cabral A. Unusual prevalence of high-risk genotypes of human papillomavirus in a group of women with neoplastic lesions and cervical cancer from Central Mexico. PLoS One 2019; 14:e0215222. [PMID: 30998701 PMCID: PMC6474327 DOI: 10.1371/journal.pone.0215222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus has been identified as a main etiological agent in the
development of cervical cancer. HPV 16 and 18 have been reported the most widely
prevalent genotypes worldwide. We conducted a study analyzing the prevalence of
high and low risk human papillomavirus viral types in the Mexican state of
Aguascalientes and neighboring cities in the states of Jalisco and Zacatecas in
central Mexico. Specific viral genotype was determined by a PCR and
hybridization-based detection test. The presence of 37 high- and low-risk HPV
genotypes was evaluated in 883 female participants. Of these, 350 presented
low-grade squamous intraepithelial lesions (LGSIL), 176 presented high-grade
squamous intraepithelial lesions (HGSIL), 107 suffered from cervical cancer and
250 women with negative cytological report for intraepithelial lesion or
malignancy (NILM). HPV 51 was the most prevalent genotype, followed by HPV 16:
overall prevalence of HPV 51, including single infections and co-infections was
31.2% in women with LGSIL, whereas prevalence of HPV 16 was 25.1%. Among women
with HGSIL, HPV 51 prevalence was 47.2% and HPV 16 was 30.1%. Prevalence of HPV
51 in women with cervical cancer was 49.5% and type 16 was 33.6%. Between single
and co-infections, most co-infections were not associated with later stages of
the disease, except 51/16 and some others. HPV 51 showed a significant
correlation with the progression of the disease (OR = 10.81 for LGSIL, 19.38 for
HGSIL and 22.95 for ICC), and when analyzing all other genotypes, five different
groups depending on their correlation with all lesion grades were determined.
According to our findings, HPV genotype 51 has a higher prevalence than HPV 16
and 18 in the Mexican state of Aguascalientes and neighboring cities in the
states of Jalisco and Zacatecas in Central Mexico.
Collapse
Affiliation(s)
- Rafael Gutiérrez Campos
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
- * E-mail:
| | - Angélica Malacara Rosas
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Elvia Gutiérrez Santillán
- Hospital General de Zona Número 6, Instituto Mexicano del Seguro Social,
Monterrey, Nuevo León, México
| | - Mireya Delgado Gutiérrez
- Hospital General de Zona Número 1, Instituto Mexicano del Seguro Social,
Aguascalientes, Aguascalientes, México
| | - Rusland Enrique Torres Orozco
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Elí Daniel García Martínez
- Department of Chemistry, Center for Basic Sciences, Autonomous University
of Aguascalientes, Aguascalientes, Aguascalientes, México
| | - Luis Fernando Torres Bernal
- Department of Medicine, Center for Health Sciences, Autonomous University
of Aguascalientes, Aguascalientes, México
| | - Alejandro Rosas Cabral
- Department of Medicine, Center for Health Sciences, Autonomous University
of Aguascalientes, Aguascalientes, México
| |
Collapse
|