1
|
Naguib MM, Eriksson P, Jax E, Wille M, Lindskog C, Bröjer C, Krambrich J, Waldenström J, Kraus RHS, Larson G, Lundkvist Å, Olsen B, Järhult JD, Ellström P. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol Spectr 2023; 11:e0258622. [PMID: 37358408 PMCID: PMC10434033 DOI: 10.1128/spectrum.02586-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Huo S, Hai Y, Guo Y, Nie L, Li H, Qiao P, Zong K, Li X, Guo Y, Song J, Zhao H, Lei W, Lan Y, Liu WJ, Gao GF. Intra-host variation and evolutionary dynamics of adenoviruses correlate to neutrophils in infected patients. J Med Virol 2022; 94:3863-3875. [PMID: 35355288 DOI: 10.1002/jmv.27744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
With deep sequencing of virus genomes within the hosts, intra-host single nucleotide variations (iSNVs) have been used for analyses of virus genome variation and evolution, which is indicated to correlate with viral pathogenesis and disease severity. Little is known about the features of iSNVs among DNA viruses. We performed the epidemiological and laboratory investigation of one outbreak of adenovirus. The whole genomes of viruses in both original oral swabs and cell-cultured virus isolates were deeply sequenced. We identified 737 iSNVs in the viral genomes sequenced from original samples and 46 viral iSNVs in cell cultured isolates, with 33 iSNVs shared by original samples and cultured isolates. Meanwhile, we found these 33 iSNVs were shared by different patients, among which, three hot-spot areas 6367-6401, 9213-9247 and 10584-10606 within the functional genes of the adenovirus genome were found. Notably, the substitution rates of iSNVs were closely correlated with the clinical and immune indicators of the patients. Especially a positive correlation to neutrophils was found, indicating a predictable biomarker of iSNV dynamics. Our findings demonstrated the neutrophil-correlated dynamic evolution features of the iSNVs within adenoviruses, which indicates a virus-host interaction during human infection of a DNA virus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuting Huo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Yan Hai
- Inner Mongolia Center for Disease Control and Prevention, Hohhot, 010031, China
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Li Nie
- Tongliao Center for Disease Control and Prevention, Tongliao, 028000, China
| | - Hongmei Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Peiwen Qiao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Kexin Zong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Yuanyuan Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.,School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Jingdong Song
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Honglan Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Yu Lan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Berry IM, Melendrez MC, Pollett S, Figueroa K, Buddhari D, Klungthong C, Nisalak A, Panciera M, Thaisomboonsuk B, Li T, Vallard TG, Macareo L, Yoon IK, Thomas SJ, Endy T, Jarman RG. Precision Tracing of Household Dengue Spread Using Inter- and Intra-Host Viral Variation Data, Kamphaeng Phet, Thailand. Emerg Infect Dis 2021; 27:1637-1644. [PMID: 34013878 PMCID: PMC8153871 DOI: 10.3201/eid2706.204323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue control approaches are best informed by granular spatial epidemiology of these viruses, yet reconstruction of inter- and intra-household transmissions is limited when analyzing case count, serologic, or genomic consensus sequence data. To determine viral spread on a finer spatial scale, we extended phylogenomic discrete trait analyses to reconstructions of house-to-house transmissions within a prospective cluster study in Kamphaeng Phet, Thailand. For additional resolution and transmission confirmation, we mapped dengue intra-host single nucleotide variants on the taxa of these time-scaled phylogenies. This approach confirmed 19 household transmissions and revealed that dengue disperses an average of 70 m per day between households in these communities. We describe an evolutionary biology framework for the resolution of dengue transmissions that cannot be differentiated based on epidemiologic and consensus genome data alone. This framework can be used as a public health tool to inform control approaches and enable precise tracing of dengue transmissions.
Collapse
|