1
|
Xu H, Blagg BSJ. Glucose-regulated protein 94 (Grp94/gp96) in viral pathogenesis: Insights into its role and therapeutic potentials. Eur J Med Chem 2025; 292:117713. [PMID: 40319577 DOI: 10.1016/j.ejmech.2025.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Glucose-regulated protein 94 (Grp94/gp96) is endoplasmic reticulum (ER) resident form of the 90 kDa heat shock protein 90 (Hsp90) that is responsible for folding, maturation and stabilization of more than 400 client proteins. Grp94 has been implicated for various diseases including metastatic cancer, primary open-angle glaucoma, and infectious diseases. In fact, Grp94 plays critical roles in different stages of viral infection cycle. It chaperones receptor proteins and viral glycoproteins that are necessary for viral entry and replication. Beyond its role in protein homeostasis, Grp94 modulates host cellular processes such as apoptosis and immune responses, which are often exploited by viruses to sustain infection. This work provides an overview of the roles of Grp94 in viral pathogenesis across various viruses and its involvement in immune modulation with the development of Grp94-selective inhibitors and their potential as anti-viral therapeutics.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Gao P, Ren J, Zhou Q, Chen P, Zhang A, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection. Vet Microbiol 2025; 301:110360. [PMID: 39756331 DOI: 10.1016/j.vetmic.2024.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Pseudorabies virus (PRV) poses a significant threat to the global swine breeding industry and public health, but how the virus transverses the host defense systems for efficient viral replication and pathogenesis remains unclear. Here, we report that PRV could inhibit the unfolded protein response (UPR), a critical component of host innate immunity against viral infection, to promote virus replication during the late infection stages. PERK was shown phosphorylated and active in PRV-infected cells, but the subsequent events were suppressed post virus infection, such as eIF2α phosphorylation, ATF4 expression, and the formation of stress granules (SGs). In the meantime, although IRE1α was also active, its activated effector XBP1s was suppressed through downregulation of XBP1 mRNA levels and cleavage of XBP1s protein. Our findings also indicate that the Golgi apparatus, where ATF6 activation occur, was severely damaged in PRV-infected cells. Meanwhile, the downstream regulatory genes associated with the three UPR sensors, such as ERp60, CHOP, and EDEM1, remained silent in PRV-infected cells. Enhanced viral replication was observed post knockdown of UPR effectors ATF4 or XBP1, while stimulation with UPR activators inhibits virus replication. In conclusion, our findings address the critical question of how PRV regulates cellular UPR in favor of viral replication, and expand understanding of viruses mediated UPR suppression in general.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianle Ren
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peng Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ailin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Wang C, Li L, Zhai X, Chang H, Liu H. Evasion of the Antiviral Innate Immunity by PRV. Int J Mol Sci 2024; 25:13140. [PMID: 39684850 DOI: 10.3390/ijms252313140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Pseudorabies virus (PRV) establishes persistent latent infections by effectively evading the host's antiviral innate immune response. PRV has developed sophisticated strategies to bypass immune surveillance through coevolution with its host. Currently, no effective vaccine exists to prevent or treat infections caused by emerging PRV variants, and the interactions between PRV and the host's innate immune defenses remain incompletely understood. Nevertheless, ongoing research is uncovering insights that may lead to novel treatments and preventive approaches for herpesvirus-related diseases. This review summarizes recent advances in understanding how PRV disrupts key adaptors in immune signaling pathways to evade antiviral immunity. Additionally, we explored the intrinsic cellular defenses that play crucial roles in combating viral invasion. A deeper understanding of the immune evasion strategies of PRV could inform the development of new therapeutic targets and vaccines.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinyu Zhai
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Chen X, Wang S, Chen K, Han Q. The global landscapes of lysine crotonylation in pseudorabies virus infection. Virology 2024; 598:110172. [PMID: 39018683 DOI: 10.1016/j.virol.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Lysine crotonylation is a common occurrence in eukaryotic cells, regulating various physiological functions, including chromatin remodeling, cellular growth, and development. However, its involvement in viral infections has rarely been documented. In this study, we reveal that pseudorabies virus (PRV) infection significantly alters the global lysine crotonylation levels in porcine kidney PK-15 cells. Specifically, we identified a few viral proteins, including UL54, gM, gD, UL19, UL37, and UL46, which undergo crotonylation modification. Our observations indicate that at 20 h post-infection (hpi), 551 crotonylation sites were reduced across 345 proteins, while 47 new sites emerged in 37 proteins compared to the control group. By 40 hpi, 263 sites had decreased in 190 proteins, while 389 new sites appeared in 240 proteins. Deeper analysis revealed that the proteins with altered crotonylation levels were primarily involved in binding, catalytic activity, biosynthetic processes, ribosome activity, and metabolic processes. Additionally, our findings underscored the significance of ribosomes and the endoplasmic reticulum (ER), which were enriched with proteins exhibiting altered crotonylation. Overall, our study for the first time offers new insights into the relationship between crotonylation and herpes virus infection, paving the way for future investigations into the role of crotonylation in viral infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, PR China.
| | - Shuaiwei Wang
- Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| | - Keyuan Chen
- Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Qingsong Han
- Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| |
Collapse
|
5
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Wang D, Chen D, Xu S, Wei F, Zhao H. Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus. J Vet Sci 2024; 25:e54. [PMID: 39083206 PMCID: PMC11291433 DOI: 10.4142/jvs.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
IMPORTANCE As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.
Collapse
Affiliation(s)
- Di Wang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyuan Zhao
- School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.
| |
Collapse
|
7
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
8
|
Lu Y, Li D, Ai H, Xie X, Jiang X, Afrasiyab, Zhang H, Xu J, Huang S. Glucose-regulated protein 94 facilitates the proliferation of the Bombyx mori nucleopolyhedrovirus via inhibiting apoptosis. Int J Biol Macromol 2023; 253:127158. [PMID: 37802442 DOI: 10.1016/j.ijbiomac.2023.127158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Glucose regulatory protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family, that plays an important role in secreted protein folding. Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of the main pathogens in sericulture, causing serious economic losses every year. Previous studies showed that HSP90 members promote BmNPV replication in silkworm, but the function of BmGRP94 in BmNPV infection and proliferation is still not understood. In this study, we investigated the interplay between BmGRP94 and BmNPV infection in silkworm. We first identified a single gene of BmGRP94 in the Bombyx mori genome, which encodes a polypeptide with 810 amino acids in length. Spatio-temporal expression profiles showed that BmGRP94 was highly expressed in hemocytes and midgut, and was significantly induced by BmNPV infection. Furthermore, overexpression of BmGRP94 facilitates viral proliferation, while BmGRP94 inhibition evidently decreased BmNPV proliferation in BmN cells and in silkworm midgut. Mechanistically, BmGRP94 inhibition triggers ER stress, as judged by increased expression of PERK/ATF4/ERO1, H2O2 production, and ER calcium efflux, which promotes cell apoptosis to restrict BmNPV replication in silkworm. These results suggest that BmGRP94 plays an important role in facilitating BmNPV proliferation, and provides a potential molecular target for BmNPV prevention.
Collapse
Affiliation(s)
- Yiting Lu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Danting Li
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Heng Ai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiuzhi Xie
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Jiang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Afrasiyab
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Hualing Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Jiaping Xu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shoujun Huang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|