1
|
Ahmadi Y, Savini F, Mutter N, Barišić I. Application of Antimicrobial Peptides as Diagnostic Biosensors. Anal Chem 2024; 96:256-264. [PMID: 38115687 PMCID: PMC10783173 DOI: 10.1021/acs.analchem.3c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The COVID-19 pandemic has shown how emerging infectious diseases could quickly affect the global health and economy. New pathogens with pandemic potential are also expected to appear soon. Moreover, the large use of antibiotics has led to the development of different so-called "superbugs" capable of escaping all of the current antibiotics. In this context, the early and cost-effective detection of pathogens is crucial to avoid the spreading of new pathogens. Here, we present molecular sensors for the recognition of a broad panel of different bacterial species. The detection is based on the use of bacteria-binding peptides (BBPs) in combination with horseradish peroxidase (HRP). We developed a reliable ELISA-like assay that permits us to study the affinity of different BBPs toward some of the most important bacterial pathogens.
Collapse
Affiliation(s)
- Yasaman Ahmadi
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Filippo Savini
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Natalie Mutter
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Ivan Barišić
- Molecular
Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
- Eko
Refugium, Crno Vrelo
2, 47240 Slunj, Croatia
| |
Collapse
|
2
|
Conzemius R, Haunold A, Barišić I. Padlock Probe-Based Generation of DNAzymes for the Colorimetric Detection of Antibiotic Resistance Genes. Int J Mol Sci 2021; 22:ijms222413654. [PMID: 34948456 PMCID: PMC8715668 DOI: 10.3390/ijms222413654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The increasing emergence of multidrug- and pan-resistant pathogens requires rapid and cost-efficient diagnostic tools to contain their further spread in healthcare facilities and the environment. The currently established diagnostic technologies are of limited utility for efficient infection control measures because they are either cultivation-based and time-consuming or require sophisticated assays that are expensive. Furthermore, infectious diseases are unfortunately most problematic in countries with low-resource settings in their healthcare systems. In this study, we developed a cost-efficient detection technology that uses G-quadruplex DNAzymes to convert a chromogenic substrate resulting in a color change in the presence of antibiotic resistance genes. The assay is based on padlock probes capable of high-multiplex reactions and targets 27 clinically relevant antibiotic resistance genes associated with sepsis. In addition to an experimental proof-of-principle using synthetic target DNA, the assay was evaluated with multidrug-resistant clinical isolates.
Collapse
|
3
|
Taguchi T, Ishikawa M, Ichikawa M, Tadenuma T, Hirakawa Y, Yoshino T, Maeda Y, Takeuchi H, Nojima D, Tanaami T, Matsunaga T, Tanaka T. Amplification-free detection of bacterial genes using a signaling probe-based DNA microarray. Biosens Bioelectron 2021; 194:113659. [PMID: 34571443 DOI: 10.1016/j.bios.2021.113659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
In this study, we developed a novel DNA microarray system that does not require fluorophore-labeling, amplification, or washing of the target nucleic acid fragments. Two types of DNA probes (so-called "signaling probes") labeled with a fluorescence dye (Cy3) and quencher molecule (BHQ2) were spotted on the DNA microarray such that fluorescent signals of Cy3 could be quenched by BHQ2 due to duplex formation between the probes. The addition of the target DNA or RNA fragments disrupted the duplex formed by the probes, resulting in the generation of fluorescence signals. We examined the assay conditions of the signaling probe-based DNA microarray, including the design of the probes, hybridization temperatures, and methods for fragmentation of target molecules. Since this approach does not require time-consuming processes, including labeling, amplification, and washing, the assay achieved specific detection of 16S rDNA and 16S rRNA extracted from Escherichia coli within 60 min, which was significantly rapid compared to conventional PCR-dependent DNA microarrays.
Collapse
Affiliation(s)
- Tomoyuki Taguchi
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Machi Ishikawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Momoko Ichikawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takashi Tadenuma
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Yuko Hirakawa
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan; Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Daisuke Nojima
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Takeo Tanaami
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
4
|
Uno H, Takeuchi H, Yoshino T, Tadenuma T, Hirakawa Y, Maeda Y, Taguchi T, Matsunaga T, Tanaka T. Signaling probe design for amplification-free detection of bacterial genes using DNA microarray. J Biosci Bioeng 2021; 133:133-139. [PMID: 34838451 DOI: 10.1016/j.jbiosc.2021.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
DNA microarrays are useful to detect microorganisms for various purposes including clinical testing and food safety. However, conventional DNA microarrays need complicated operations such as amplification, fluorescence labeling, and washing steps. To address this issue, we previously developed the signaling probe-based DNA microarray system that can eliminate these steps, and demonstrated a direct detection of bacterial genes. Nonetheless, this system requires well-designed probe sets due to the fluorescence resonance energy transfer (FRET)-based mode of action. Up to date, the probe design was highly dependent on the trial-and-error processes. In this study, we propose a strategy to rationally design the sequences of signaling probes based on the thermodynamic analysis. This analysis aided to improve the probe performance approximately 2.8 times, without experiments, by suppressing the secondary structure formation of the probes. We successfully demonstrated the specific and amplification-free detection of 5S rRNA from total RNA extracted from Escherichia coli within 30 min.
Collapse
Affiliation(s)
- Haruka Uno
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Tadenuma
- Yokogawa Electric Corporation, 2-9-32 Naka-cho, Musashino-shi, Tokyo 180-8750, Japan
| | - Yuko Hirakawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Yokogawa Electric Corporation, 2-9-32 Naka-cho, Musashino-shi, Tokyo 180-8750, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoyuki Taguchi
- Yokogawa Electric Corporation, 2-9-32 Naka-cho, Musashino-shi, Tokyo 180-8750, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
5
|
Lechner B, Hageneder S, Schmidt K, Kreuzer MP, Conzemius R, Reimhult E, Barišić I, Dostalek J. In Situ Monitoring of Rolling Circle Amplification on a Solid Support by Surface Plasmon Resonance and Optical Waveguide Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32352-32362. [PMID: 34212712 DOI: 10.1021/acsami.1c03715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growth of surface-attached single-stranded deoxyribonucleic acid (ssDNA) chains is monitored in situ using an evanescent wave optical biosensor that combines surface plasmon resonance (SPR) and optical waveguide spectroscopy (OWS). The "grafting-from" growth of ssDNA chains is facilitated by rolling circle amplification (RCA), and the gradual prolongation of ssDNA chains anchored to a gold sensor surface is optically tracked in time. At a sufficient density of the polymer chains, the ssDNA takes on a brush architecture with a thickness exceeding 10 μm, supporting a spectrum of guided optical waves traveling along the metallic sensor surface. The simultaneous probing of this interface with the confined optical field of surface plasmons and additional more delocalized dielectric optical waveguide modes enables accurate in situ measurement of the ssDNA brush thickness, polymer volume content, and density gradients. We report for the first time on the utilization of the SPR/OWS technique for the measurement of the RCA speed on a solid surface that can be compared to that in bulk solutions. In addition, the control of ssDNA brush properties by changing the grafting density and ionic strength and post-modification via affinity reaction with complementary short ssDNA staples is discussed. These observations may provide important leads for tailoring RCA toward sensitive and rapid assays in affinity-based biosensors.
Collapse
Affiliation(s)
- Bernadette Lechner
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Katharina Schmidt
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Mark P Kreuzer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo 1021, San Martín, CP 1650 Provincia de Buenos Aires, Argentina
| | - Rick Conzemius
- Molecular Diagnostics, Health & Environment, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11, Vienna 1190, Austria
| | - Ivan Barišić
- Molecular Diagnostics, Health & Environment, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| |
Collapse
|
6
|
Duncan R, Grigorenko E, Fisher C, Hockman D, Lanning B. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls - an update. Expert Rev Mol Diagn 2018; 19:15-25. [DOI: 10.1080/14737159.2019.1559055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Robert Duncan
- Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | - Carolyn Fisher
- Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | - Bryan Lanning
- Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| |
Collapse
|
7
|
Highly Specific Ligation-dependent Microarray Detection of Single Nucleotide Polymorphisms. Methods Mol Biol 2018; 1616:231-240. [PMID: 28600773 DOI: 10.1007/978-1-4939-7037-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fast detection and characterization of pathogens are essential for an efficient treatment of infectious diseases. However, the development of improved and reliable diagnostic methods is still an ongoing process because not only pathogens but also their antibiotic resistances have to be identified. The gold standard today is, however, a cultivation-based characterization approach, which takes days until results can be evaluated. In patients with, for example, severe sepsis, the diagnostic test duration is a very critical parameter because a delay of treatment optimization increases the mortality rate significantly. In contrast, DNA-based molecular techniques can obtain results within a few hours. A further challenge in diagnostic laboratories is that patient samples have to be screened for hundreds of potential pathogens, antibiotic resistance genes, and virulence factors, which is achieved by using a number of specialized tests at the moment. Microarrays are outstandingly good for the simultaneous analysis of thousands of different genes and have become a popular tool in biological studies. Nevertheless, further optimizations of the microarray technology are required due to the obligatory DNA labeling and/or amplification steps and the effects of nonspecific DNA hybridization. Here, we describe a fast and highly specific solid-support-based DNA characterization method for pathogens and antibiotic resistance genes.
Collapse
|
8
|
Conzemius R, Barišić I. Detection of Pathogens and Ampicillin-resistance Genes Using Multiplex Padlock Probes. Bio Protoc 2017; 7:e2504. [DOI: 10.21769/bioprotoc.2504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/30/2017] [Accepted: 07/13/2017] [Indexed: 11/02/2022] Open
|