1
|
Naiel B, Fawzy M, Mahmoud AED, Halmy MWA. Sustainable fabrication of dimorphic plant derived ZnO nanoparticles and exploration of their biomedical and environmental potentialities. Sci Rep 2024; 14:13459. [PMID: 38862646 PMCID: PMC11167042 DOI: 10.1038/s41598-024-63459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.
Collapse
Affiliation(s)
- Bassant Naiel
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Marwa Waseem A Halmy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
2
|
Kidd SE, Crawford LC, Halliday CL. Antifungal Susceptibility Testing and Identification. Infect Dis Clin North Am 2021; 35:313-339. [PMID: 34016280 DOI: 10.1016/j.idc.2021.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The requirement for antifungal susceptibility testing is increasing given the availability of new drugs, increasing populations of individuals at risk for fungal infection, and emerging multiresistant fungi. Rapid and accurate fungal identification remains at the forefront of laboratory efforts to guide empiric therapy. Antifungal susceptibility testing methods have greatly improved, but are subject to variation in results between methods. Careful standardization, validation, and extensive training of users is essential to ensure susceptibility results are clinically useful and interpreted appropriately. Interpretive criteria for many drugs and species are still lacking, but this will continue to evolve.
Collapse
Affiliation(s)
- Sarah E Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, SA Pathology (Frome Campus), PO Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Lucy C Crawford
- Microbiology & Infectious Diseases, SA Pathology, PO Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Catriona L Halliday
- Clinical Mycology Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, The University of Sydney, Level 3 ICPMR, Darcy Road, Westmead, New South Wales 2145, Australia
| |
Collapse
|
3
|
Analysis of Biofilm-Related Genes and Antifungal Susceptibility Pattern of Vaginal Candida albicans and Non- Candida albicans Species. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5598907. [PMID: 34136569 PMCID: PMC8179781 DOI: 10.1155/2021/5598907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023]
Abstract
Background Vulvovaginal candidiasis caused by Candida species is a prevalent fungal infection among women. It is believed that the pathogenesis of Candida species is linked with the production of biofilm which is considered a virulence factor for this organism. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of Candida species. Methods We investigated the molecular identification of 70 vaginal isolates of Candida species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27-A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes. Results Our findings showed that the most common yeast isolated from vaginal discharge was C. albicans (67%), followed by the non-Candida albicans species (33%). All C. albicans complex isolates were confirmed as C. albicans by HWP-PCR, and all isolates of the C. glabrata complex were revealed to be C. glabrata sensu stricto using the multiplex PCR method. FLC resistance was observed in 23.4% of C. albicans and 7.7% of C. glabrata. The resistance rate to ITC was found in 10.6% of C. albicans. The frequency of ALS1, ALS3, and HWP1 genes among Candida species was 67.1%, 80%, and 81.4%, respectively. Biofilm formation was observed in 54.3% of Candida species, and the highest frequency detected as a virulence factor was for the ALS3 gene (97.3%) in biofilm-forming species. Discussion. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains.
Collapse
|
4
|
Ando T, Kawakami H, Mochizuki K, Murata K, Manabe Y, Takagi D, Yagasaki A, Niwa Y, Yamada N, Ogura S, Matsumoto K, Morita K, Todokoro D, Kamei K. Intraocular penetration of liposomal amphotericin B after intravenous injection in inflamed human eyes. J Infect Chemother 2021; 27:1319-1322. [PMID: 33994091 DOI: 10.1016/j.jiac.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the intraocular penetration of amphotericin B (AMPH-B) after an intravenously injection of liposomal amphotericin B (L-AMB) in inflamed human eyes. METHODS Seven eyes of 5 patients with fungal eye diseases (endophthalmitis in 6 eyes and keratitis in 1 eye) were treated with intravenous injections of 100-250 mg/day of L-AMB. Samples of blood, corneal button, aqueous humor, and vitreous humor were collected and assessed for AMPH-B. RESULTS The AMPH-B level in the cornea (604.0 μg/g) of the case with fungal keratitis exceeded the minimum inhibitory concentration. However, the levels in the aqueous and vitreous humors of the cases with fungal endophthalmitis were lower, e.g., 0.02 ± 0.01 μg/ml (0.09% of serum level) in the aqueous humor and 0.05 ± 0.08 μg/ml (0.17% of serum level) in the vitreous humor. CONCLUSIONS The AMPH-B levels administered intravenously were very low in the aqueous and vitreous humors. Our findings indicate that intravenous L-AMB can be considered only for patients with mild endogenous fungal endophthalmitis, e.g., isolated chorioretinitis without vitreous extensions.
Collapse
Affiliation(s)
- Tomoko Ando
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Ophthalmology, Gifu Municipal Hospital, Gifu, Japan
| | - Hideaki Kawakami
- Department of Ophthalmology, Gifu Municipal Hospital, Gifu, Japan.
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Murata
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Manabe
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Takagi
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayaka Yagasaki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshiaki Niwa
- Department of Ophthalmology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Noriaki Yamada
- Department of Emergency & Disaster Medicine, Advanced Critical Care Center Gifu University, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency & Disaster Medicine, Advanced Critical Care Center Gifu University, Gifu, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Daisuke Todokoro
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Caggiano G, Diella G, Triggiano F, Bartolomeo N, Apollonio F, Campanale C, Lopuzzo M, Montagna MT. Occurrence of Fungi in the Potable Water of Hospitals: A Public Health Threat. Pathogens 2020; 9:E783. [PMID: 32987845 PMCID: PMC7601515 DOI: 10.3390/pathogens9100783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/24/2023] Open
Abstract
Since the last decade, attention towards the occurrence of fungi in potable water has increased. Commensal and saprophytic microorganisms widely distributed in nature are also responsible for causing public health problems. Fungi can contaminate hospital environments, surviving and proliferating in moist and unsterile conditions. According to Italian regulations, the absence of fungi is not a mandatory parameter to define potable water, as a threshold value for the fungal occurrence has not been defined. This study evaluated the occurrence of fungi in potable water distribution systems in hospitals. The frequency of samples positive for the presence of fungi was 56.9%; among them, filamentous fungi and yeasts were isolated from 94.2% and 9.2% of the samples, respectively. The intensive care unit (87.1%) had the highest frequency of positive samples. Multivariable model (p < 0.0001), the variables of the period of the year (p < 0.0001) and type of department (p = 0.0002) were found to be statistically significant, suggesting a high distribution of filamentous fungi in the potable water of hospitals. Further studies are necessary to validate these results and identify the threshold values of fungi levels for different types of water used for various purposes to ensure the water is safe for consumption and protect public health.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology-Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (F.T.); (N.B.); (F.A.); (C.C.); (M.L.); (M.T.M.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Genomewide Elucidation of Drug Resistance Mechanisms for Systemically Used Antifungal Drugs Amphotericin B, Caspofungin, and Voriconazole in the Budding Yeast. Antimicrob Agents Chemother 2019; 63:AAC.02268-18. [PMID: 31209012 DOI: 10.1128/aac.02268-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
There are only a few antifungal drugs used systemically in treatment, and invasive fungal infections that are resistant to these drugs are an emerging problem in health care. In this study, we performed a high-copy-number genomic DNA (gDNA) library screening to find and characterize genes that reduce susceptibility to amphotericin B, caspofungin, and voriconazole in Saccharomyces cerevisiae We identified the PDR16 and PMP3 genes for amphotericin B, the RMD9 and SWH1 genes for caspofungin, and the MRS3 and TRI1 genes for voriconazole. The deletion mutants for PDR16 and PMP3 were drug susceptible, but the other mutants had no apparent susceptibility. Quantitative-PCR analyses suggested that the corresponding drugs upregulated expression of the PDR16, PMP3, SWH1, and MRS3 genes. To further characterize these genes, we also profiled the global expression patterns of the cells after treatment with the antifungals and determined the genes and paths that were up- or downregulated. We also cloned Candida albicans homologs of the PDR16, PMP3, MRS3, and TRI1 genes and expressed them in S. cerevisiae Heterologous expression of Candida homologs also provided reduced drug susceptibility to the budding yeast cells. Our analyses suggest the involvement of new genes in antifungal drug resistance.
Collapse
|
7
|
Ahuja T, Fong K, Louie E. Combination antifungal therapy for treatment of Candida parapsilosis prosthetic valve endocarditis and utility of T2Candida Panel®: A case series. IDCases 2019; 15:e00525. [PMID: 30976517 PMCID: PMC6441745 DOI: 10.1016/j.idcr.2019.e00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/30/2023] Open
Abstract
Although Candida species are common pathogens for nosocomial infections, Candida endocarditis is still considered a rare entity. Here, we report two cases of Candida parapsilosis endovascular infections in patients with prosthetic valves, both of which responded to combination antifungal therapy without surgical intervention. Additionally, T2 magnetic resonance (T2MR) was used to assess for resolution of invasive candidiasis. The first case is of an elderly man with Candida parapsilosis endovascular infection who responded to combination antifungal therapy with micafungin and fluconazole followed by suppressive therapy, without surgical intervention. The second case is of a middle-aged man with Candida parapsilosis prosthetic valve endocarditis who also responded to combination antifungal therapy with micafungin, flucytosine and fluconazole, without surgical intervention.
Collapse
Affiliation(s)
- Tania Ahuja
- New York University Langone Health, Department of Pharmacy, 550 First Avenue, New York, NY 10016, United States
| | - Karen Fong
- University of Maryland St. Joseph Medical Center, Department of Pharmacy, 7601 Osler Dr, Towson, MD 21204, United States
| | - Eddie Louie
- New York University Langone Health, Department of Medicine, Division of Infectious Diseases, 550 First Avenue, New York, NY 10016, United States
| |
Collapse
|
8
|
Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 2019; 110:857-868. [DOI: 10.1016/j.biopha.2018.12.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022] Open
|
9
|
McCarthy MW, Walsh TJ. Drugs currently under investigation for the treatment of invasive candidiasis. Expert Opin Investig Drugs 2017; 26:825-831. [PMID: 28617137 DOI: 10.1080/13543784.2017.1341488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The widespread implementation of immunosuppressants, immunomodulators, hematopoietic stem cell transplantation and solid organ transplantation in clinical practice has led to an expanding population of patients who are at risk for invasive candidiasis, which is the most common form of fungal disease among hospitalized patients in the developed world. The emergence of drug-resistant Candida spp. has added to the morbidity associated with invasive candidiasis and novel therapeutic strategies are urgently needed. Areas covered: In this paper, we explore investigational agents for the treatment of invasive candidiasis, with particular attention paid to compounds that have recently entered phase I or phase II clinical trials. Expert opinion: The antifungal drug development pipeline has been severely limited due to regulatory hurdles and a systemic lack of investment in novel compounds. However, several promising drug development strategies have recently emerged, including chemical screens involving Pathogen Box compounds, combination antifungal therapy, and repurposing of existing agents that were initially developed to treat other conditions, all of which have the potential to redefine the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Matthew W McCarthy
- a Medicine, Weill Cornell Medical Center , Division of General Internal Medicine , New York , NY , USA
| | - Thomas J Walsh
- b Transplantation-Oncology Infectious Diseases Program, Medical Mycology Research Laboratory, Medicine, Pediatrics, and Microbiology & Immunology Weill Cornell Medical Center , Henry Schueler Foundation Scholar, Sharpe Family Foundation Scholar in Pediatric Infectious Diseases , New York , NY , USA
| |
Collapse
|