1
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
3
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Abstract
Lab-on-a-Disc (LoaD) biosensors are increasingly a promising solution for many biosensing applications. In the search for a perfect match between point-of-care (PoC) microfluidic devices and biosensors, the LoaD platform has the potential to be reliable, sensitive, low-cost, and easy-to-use. The present global pandemic draws attention to the importance of rapid sample-to-answer PoC devices for minimising manual intervention and sample manipulation, thus increasing the safety of the health professional while minimising the chances of sample contamination. A biosensor is defined by its ability to measure an analyte by converting a biological binding event to tangible analytical data. With evolving manufacturing processes for both LoaDs and biosensors, it is becoming more feasible to embed biosensors within the platform and/or to pair the microfluidic cartridges with low-cost detection systems. This review considers the basics of the centrifugal microfluidics and describes recent developments in common biosensing methods and novel technologies for fluidic control and automation. Finally, an overview of current devices on the market is provided. This review will guide scientists who want to initiate research in LoaD PoC devices as well as providing valuable reference material to researchers active in the field.
Collapse
|
5
|
Hedayati MT, Taghizadeh-Armaki M, Zarrinfar H, Hoseinnejad A, Ansari S, Abastabar M, Er H, Özhak B, Öğünç D, Ilkit M, Seyedmousavi S. Discrimination of Aspergillus flavus from Aspergillus oryzae by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. Mycoses 2019; 62:1182-1188. [PMID: 31556203 DOI: 10.1111/myc.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aspergillus flavus is a major cause of severe non-invasive fungal infections in the Middle Eastern countries. However, it is difficult to distinguish A flavus from A oryzae. OBJECTIVES To assess the potential of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in discriminating between A flavus and A oryzae and compare it with β-tubulin gene sequencing. METHODS We used the Bruker Daltonik MALDI-TOF MS system to analyse 200 clinical and environmental A flavus isolates and one A pseudonomius and one A alliaceus (Aspergillus section Flavi) isolate a priori identified as such by sequencing of the β-tubulin gene. RESULTS All 200 A flavus isolates were identified at the genus level and 176 (88%) at the species levels by MALDI-TOF MS based on the spectral log-scores (≥2.0 and 1.7-1.99, respectively); among them, only 18 (10.2%) were confirmed as A flavus, whereas 35 (19.9%) were identified as A oryzae and 123 (69.9%) as A flavus/A oryzae. Aspergillus pseudonomius and A alliaceus were misidentified as A flavus and A parasiticus with log-score values of 1.39 and 1.09, respectively. CONCLUSIONS The results indicate that the commercially available Bruker Daltonik MALDI-TOF MS score database cannot separate A flavus and A oryzae species. We also showed that establishment of an in-house library is a useful tool to discriminate closely related Aspergillus species, including A flavus and A oryzae.
Collapse
Affiliation(s)
- Mohammad T Hedayati
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Taghizadeh-Armaki
- Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Hoseinnejad
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Halil Er
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Betil Özhak
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Dilara Öğünç
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Center of Expertise in Microbiology, Infection Biology and Antimicrobial Pharmacology, Tehran, Iran.,Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Abstract
INTRODUCTION Fungal infection burden related to Mucorales has been on the rise with significant associated morbidity and mortality. The major obstacle in the management has been lack of a non-invasive rapid and a reliable diagnostic test. Developing a culture-independent biomarker for the early diagnosis of mucormycosis is a major unmet need in modern mycology. Several approaches have been developed, such as immunohistochemistry (IHC) that can confirm the histopathologic diagnosis of the invasive mold infection, polymerase chain reaction (PCR) on formalin-fixed paraffin-embedded (FFPE) or fresh tissue, body fluids such as bronchoalveolar fluid (BAL), and detection directly from serum/blood. Serologic tests, matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS), metabolomics and metagenomic shotgun sequencing are other evolving technologies. Area covered: In this review paper, we report the current status of the molecular diagnostics in the diagnosis of mucormycosis: serologic tests, IHC, PCR, protein-based with MALDI-TOF, metabolomics and metagenomic sequencing. Expert commentary: This review will conclude with an expert commentary on the potential uses/challenges of the currently available tests and the future of molecular diagnostics for mucormycosis.
Collapse
Affiliation(s)
- Sanjeet S Dadwal
- a Division of Infectious Disease , City of Hope National Medical Center , Duarte , CA , USA
| | - Dimitrios P Kontoyiannis
- b Department of Infectious Diseases, Infection Control and Employee Health , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|